PIER C
 
Progress In Electromagnetics Research C
ISSN: 1937-8718
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 191-203

COMBINING DIFFERENT IN-PLANE PHOTONIC WIRE LASERS AND COUPLING THE RESULTING FIELD INTO A SINGLE-MODE WAVEGUIDE

By M. R. Raihan, Z. Li, D. Liu, H. T. Hattori, and M. Premaratne

Full Article PDF (306 KB)

Abstract:
Photonic wire lasers are compact light sources that are fabricated in high-index contrast waveguides (with typical widths of a few hundreds of nanometers). Because of their small footprints, they may become a basic laser component in future-generation of optical integrated circuits. Owing to having low optical volume by design, photonic wire lasers can only produce low output power that may not be adequate in many applications. A solution to this problem is to coherently combine the output power of different photonic wire lasers to produce larger output power. In this article, we analyze different ways to combine light coming out from photonic wire lasers and couple the combined power into a single-mode waveguide.

Citation:
M. R. Raihan, Z. Li, D. Liu, H. T. Hattori, and M. Premaratne, "Combining Different in-Plane Photonic Wire Lasers and Coupling the Resulting Field into a Single-Mode Waveguide," Progress In Electromagnetics Research C, Vol. 21, 191-203, 2011.
doi:10.2528/PIERC10112103

References:
1. Painter, O., R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and , "Two-dimensional photonic bandgap defect mode laser ," Science, Vol. 284, 1819-1821, 1999.
doi:10.1126/science.284.5421.1819

2. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
doi:10.1109/JQE.2002.802951

3. Song, D. S., S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, "Single-fundamental-mode photonic crystal surface-emitting lasers," Appl. Phys. Lett., Vol. 80, 3608-3610, 2003.

4. Hattori, H. T., C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides ," Opt. Express, Vol. 13, 3310-3322, 2005.
doi:10.1364/OPEX.13.003310

5. Amaratunga, V. S., H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, "Photonic crystal phase detector," J. Opt. Soc. Am. B, Vol. 25, 1532-1536, 2008.
doi:10.1364/JOSAB.25.001532

6. Matsumoto, T. and T. Baba, "Photonic crystal k-vector super-prism," J. Lightwave Technol., Vol. 22, 917-922, 2004.
doi:10.1109/JLT.2004.824537

7. Ohnishi, D., T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express, Vol. 12, 1562-1568, 2004.
doi:10.1364/OPEX.12.001562

8. Fujita, M., A. Sakai, and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron., Vol. 5, 673-681, 1999.
doi:10.1109/2944.788434

9. Boriskina, S. V., T. M. Benson, P. D. Sewell, and A. I. Nosich, "Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures," IEEE J. Sel. Top. Quantum Electron., Vol. 12, 1175-1182, 2006.
doi:10.1109/JSTQE.2006.882662

10. Hattori, H. T., "Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches," Appl. Optics, Vol. 47, 2178-2185, 2008.
doi:10.1364/AO.47.002178

11. Hattori, H. T., D. Y. Liu, H. H. Tan, and C. Jagadish, "Large square resonator laser with quasi-single-mode operation," IEEE Phot. Technol. Lett., Vol. 21, 359-361, 2005.
doi:10.1109/LPT.2008.2011921

12. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, 2007.
doi:10.1038/nature05350

13. Laux, E., C. Genet, T. Skauli, and T. W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging," Nature Phot., Vol. 2, 161, 2008.
doi:10.1038/nphoton.2008.1

14. Yu, N., E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett., Vol. 91, 173113, 2007.
doi:10.1063/1.2801551

15. Liu, D. Y., H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, "Coupling analysis of GaAs-based microdisk lasers with different external claddings," J. Lightwave Technol., Vol. 27, 5090-5098, 2009.
doi:10.1109/JLT.2009.2028161

16. Hattori, H. T., Z. Li, D. Y. Liu, I. D. Rukhlenko, and M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express, Vol. 17, 20878-20884, 2009.
doi:10.1364/OE.17.020878

17. Bogaerts, W., D. Tailaert, B. Luyssaert, P. Dumon, J. Van Campehout, P. Bientsman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in silicon-on-insulator," Opt. Express, Vol. 12, 1583-1591, 2004.
doi:10.1364/OPEX.12.001583

18. Zain, A. R., N. P. Johnson, M. Sorel, and R. M. De La Rue, "High quality-factor 1-D-suspended photonic crystal/photonic wire silicon waveguide micro-cavities," IEEE Phot. Technol. Lett., Vol. 21, 1789-1791, 2009.
doi:10.1109/LPT.2009.2033712

19. Homeyer, E., J. Houel, X. Checoury, G. Fishman, S. Sauvage, and P. Boucaud, "Thermal emission of midinfrared GaAs photonic crystal ," Phys. Rev. B, Vol. 78, 165305, 2008.
doi:10.1103/PhysRevB.78.165305

20. Hascik, S., I. Hotovy, T. Lalinsky, G. Vanko, V. Rehacek, and Z. Mozolova, "Preparation of thin GaAs suspended membranes for gas micro-sensors using plasma etching," Vacuum, Vol. 82, 236-239, 2008.
doi:10.1016/j.vacuum.2007.07.011

21., Fullwave 4.0 RSOFT design group, http://www.rsoftdesign.com, 1999.

22. Henry, C., N. Olsson, and N. Dutta, "Locking range and stability of injection locked 1.54 μm InGaAsPSemiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 21, 1152-1156, 1985.
doi:10.1109/JQE.1985.1072787

23. Murakami, A., K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection ," IEEE Journal of Quantum Electronics, Vol. 39, 1196-1204, 2003.
doi:10.1109/JQE.2003.817583

24. Lau, E. K., S. Hyuk-Kee, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE Journal of Quantum Electronics, Vol. 44, 90-99, 2008.
doi:10.1109/JQE.2007.910450


© Copyright 2010 EMW Publishing. All Rights Reserved