1. Painter, O., R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and , "Two-dimensional photonic bandgap defect mode laser ," Science, Vol. 284, 1819-1821, 1999.
doi:10.1126/science.284.5421.1819 Google Scholar
2. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
doi:10.1109/JQE.2002.802951 Google Scholar
3. Song, D. S., S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, "Single-fundamental-mode photonic crystal surface-emitting lasers," Appl. Phys. Lett., Vol. 80, 3608-3610, 2003. Google Scholar
4. Hattori, H. T., C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides ," Opt. Express, Vol. 13, 3310-3322, 2005.
doi:10.1364/OPEX.13.003310 Google Scholar
5. Amaratunga, V. S., H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, "Photonic crystal phase detector," J. Opt. Soc. Am. B, Vol. 25, 1532-1536, 2008.
doi:10.1364/JOSAB.25.001532 Google Scholar
6. Matsumoto, T. and T. Baba, "Photonic crystal k-vector super-prism," J. Lightwave Technol., Vol. 22, 917-922, 2004.
doi:10.1109/JLT.2004.824537 Google Scholar
7. Ohnishi, D., T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express, Vol. 12, 1562-1568, 2004.
doi:10.1364/OPEX.12.001562 Google Scholar
8. Fujita, M., A. Sakai, and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron., Vol. 5, 673-681, 1999.
doi:10.1109/2944.788434 Google Scholar
9. Boriskina, S. V., T. M. Benson, P. D. Sewell, and A. I. Nosich, "Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures," IEEE J. Sel. Top. Quantum Electron., Vol. 12, 1175-1182, 2006.
doi:10.1109/JSTQE.2006.882662 Google Scholar
10. Hattori, H. T., "Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches," Appl. Optics, Vol. 47, 2178-2185, 2008.
doi:10.1364/AO.47.002178 Google Scholar
11. Hattori, H. T., D. Y. Liu, H. H. Tan, and C. Jagadish, "Large square resonator laser with quasi-single-mode operation," IEEE Phot. Technol. Lett., Vol. 21, 359-361, 2005.
doi:10.1109/LPT.2008.2011921 Google Scholar
12. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, 2007.
doi:10.1038/nature05350 Google Scholar
13. Laux, E., C. Genet, T. Skauli, and T. W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging," Nature Phot., Vol. 2, 161, 2008.
doi:10.1038/nphoton.2008.1 Google Scholar
14. Yu, N., E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett., Vol. 91, 173113, 2007.
doi:10.1063/1.2801551 Google Scholar
15. Liu, D. Y., H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, "Coupling analysis of GaAs-based microdisk lasers with different external claddings," J. Lightwave Technol., Vol. 27, 5090-5098, 2009.
doi:10.1109/JLT.2009.2028161 Google Scholar
16. Hattori, H. T., Z. Li, D. Y. Liu, I. D. Rukhlenko, and M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express, Vol. 17, 20878-20884, 2009.
doi:10.1364/OE.17.020878 Google Scholar
17. Bogaerts, W., D. Tailaert, B. Luyssaert, P. Dumon, J. Van Campehout, P. Bientsman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in silicon-on-insulator," Opt. Express, Vol. 12, 1583-1591, 2004.
doi:10.1364/OPEX.12.001583 Google Scholar
18. Zain, A. R., N. P. Johnson, M. Sorel, and R. M. De La Rue, "High quality-factor 1-D-suspended photonic crystal/photonic wire silicon waveguide micro-cavities," IEEE Phot. Technol. Lett., Vol. 21, 1789-1791, 2009.
doi:10.1109/LPT.2009.2033712 Google Scholar
19. Homeyer, E., J. Houel, X. Checoury, G. Fishman, S. Sauvage, and P. Boucaud, "Thermal emission of midinfrared GaAs photonic crystal ," Phys. Rev. B, Vol. 78, 165305, 2008.
doi:10.1103/PhysRevB.78.165305 Google Scholar
20. Hascik, S., I. Hotovy, T. Lalinsky, G. Vanko, V. Rehacek, and Z. Mozolova, "Preparation of thin GaAs suspended membranes for gas micro-sensors using plasma etching," Vacuum, Vol. 82, 236-239, 2008.
doi:10.1016/j.vacuum.2007.07.011 Google Scholar
21. Fullwave 4.0 RSOFT design group, http://www.rsoftdesign.com, 1999. Google Scholar
22. Henry, C., N. Olsson, and N. Dutta, "Locking range and stability of injection locked 1.54 μm InGaAsPSemiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 21, 1152-1156, 1985.
doi:10.1109/JQE.1985.1072787 Google Scholar
23. Murakami, A., K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection ," IEEE Journal of Quantum Electronics, Vol. 39, 1196-1204, 2003.
doi:10.1109/JQE.2003.817583 Google Scholar
24. Lau, E. K., S. Hyuk-Kee, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE Journal of Quantum Electronics, Vol. 44, 90-99, 2008.
doi:10.1109/JQE.2007.910450 Google Scholar