Search Results(13671)

2011-04-29
PIER B
Vol. 30, 71-82
Application of Super-SVA to Stepped-Chirp Radar Imaging with Frequency Band Gaps Between Subchirps
Wenshuai Zhai and Yunhua Zhang
It is well-known that the stepped-frequency chirp signal (SFCS) technique is one of the very effective approaches for achieving high range resolution in radar [1-5]. The SFCS is a train of subchirp pulses with up-stepped or down-stepped carrier frequencies. However, there exists a rang-Doppler coupling problem (RDCP) when applying this signal to practical radar system because longer time is needed for transmitting a complete burst compared with that needed for transmitting just a single chirp. In radar system design, if carrier frequency step (△f) can be larger than the bandwidth of subchirp (Bm), it will be very helpful for using less number of subchirps to obtain high resolution and at the same time the influence of RDCP on imaging quality can be reduced. However the spectrum of transmitted signal is not continuous but with bandwidth gaps existing when Δf > Bm, and it will finally lead to high grating lobes in range profile. In this paper, the Super-SVA technique is applied to radar signal processing to solve the grating lobe problem arisen from bandwidth gaps. Super-SVA has been proven to be a very effective method used for extrapolating signal spectrum. Simulation and experiment results for moving train imaging are presented to show that the algorithm works very well.
2011-04-29
PIER B
Vol. 30, 47-70
Land Cover Classification of Palsar Images by Knowledge Based Decision Tree Classifier and Supervised Classifiers Based on SAR Observables
Pooja Mishra , Dharmendra Singh and Yoshio Yamaguchi
The intent of this paper is to explore the application of information obtained from fully polarimetric data for land cover classification. Various land cover classification techniques are available in the literature, but still uncertainty exists in labeling various clusters to its own class without using any a priori information. Therefore, the present work is focused on analyzing useful intrinsic information extracted from SAR observables obtained by various decomposition techniques. The eigenvalue decomposition and Pauli decomposition have been carried out to separate classes on the basis of their scattering mechanisms. The various supervised classification techniques were applied in order to see possible differences among SAR observables in terms of information that they contain and their usefulness in classifying particular land cover type. Another important issue is labeling the clusters, and this work is carried out by decision tree classification that uses knowledge based approach. This classifier is implemented by scrupulous knowledge of data obtained by empirical evidence and their experimental validation. It has been demonstrated quantitatively that standard polarimetric parameters such as polarized backscatter coefficients (linear, circular and linear 45°), co and cross-pol ratios for both linear and circular polarizations can be used as information bearing features for making decision boundaries. This forms the basis of discrimination between various classes in sequential format. The classification approach has been evaluated for fully polarimetric ALOS PALSAR L-band level 1.1 data. The classifier uses these data to classify individual pixel into one of the five categories: water, tall vegetation, short vegetation, urban and bare soil surface. The quantitative results shown by this classifier gives classification accuracy of about 88%, which is better than other classification techniques (supervised classification techniques based on SAR observables).
2011-04-29
PIER Letters
Vol. 23, 119-128
The Support Vector Machine for Dielectric Target Detection through a Wall
Fang-Fang Wang and Ye-Rong Zhang
In this paper, a novel approach based on the support vector machine (SVM) for dielectric target detection in through-wall scenario is proposed. Through-wall detection is converted to the establishment and use of a mapping between backscattered data and the dielectric parameter of the target. Then the propagation effects caused by walls, such as refraction and speed change, are included in the mapping that can be regressed after SVM training process. The training and testing data for the SVM is obtained by finite-difference time-domain (FDTD) simulation. Numerical experiments show that once the training phase is completed, this technique only needs computational time in an order of seconds to predict the parameters. Besides, experimental results show that good consistency between the actual parameters and estimated ones is achieved. Through-wall target tracking is also discussed and the results are acceptable.
2011-04-28
PIER B
Vol. 30, 27-46
Dyadic Green's Functions for Unbounded and Two-Layered General Anisotropic Media
Ying Huang and Jay Kyoon Lee
The dyadic Green's functions (DGFs) for unbounded and layered general anisotropic media are considered in this paper. First, the DGF for unbounded problem is derived using the eigen-decomposition method. Two different approaches are proposed to obtain the DGF for layered problem when the source is located inside the anisotropic region. The first approach is to apply the modified symmetrical property of DGF to obtain the DGF for the field in the isotropic region when the source is located inside the anisotropic region, from the DGF for the field in anisotropic region when the source is in the isotropic region. This modified symmetrical property can be applied for the layered geometry with bounded anisotropic region being either reciprocal or non-reciprocal medium. However, this method can not give the DGF for the field inside the anisotropic region. Thus, the second approach is presented to obtain the complete set of DGFs for all the regions including the anisotropic region, by applying the direct construction method through eigen-decomposition together with matrix method.
2011-04-28
PIER B
Vol. 29, 409-429
Redesign and Optimization of the Paving Algorithm Applied to Electromagnetic Tools (Invited Paper)
Javier Moreno , Ma Jesús Algar , Ivan Gonzalez-Diego and Felipe Catedra
To study any electromagnetic system, the geometry model must be discretized into elements with an appropriate size for the working frequency. The discretization of a system must be transparent to the user of electromagnetic computing tools. A mesher is presented based on the paving algorithm. The algorithm has been modified to allow triangular elements and has been accelerated by distributing the load on multiple processors simultaneously. Also, a multilevel mode has been implemented. With this tool, any geometry defined by NURBS (Non Uniform Rational B-Spline) surfaces can be decomposed into triangular and quadrangular curved elements.
2011-04-28
PIER Letters
Vol. 23, 109-118
Ultra-Wide Bandwidth Microstrip Monopole Antenna by Using Electromagnetic Band-Gap Structures
Dalia Mohammed Nasha Elsheakh , Hala Elsadek , Esmat A. F. Abdallah , Hadia El-Hennawy and Magdy F. Iskander
A novel compact design for ultra-wide bandwidth (UWB) planar monopole antenna is presented in this paper. The basis for achieving the UWB operation is through using semicircular microstrip monopole antenna with modified ground plane in the form of semi circular umbrella like shape. This shape produces bandwidth ranging from 3 to 35 GHz with discontinuities from 7 GHz to 10 GHz, from 12.5 GHz to 17.5 GHz and from 22 GHz to 40 GHz. The antenna size is reduced by 27% relative to the size of conventional rectangular monopole patch antenna. Metamaterial structures are used for further antenna performance improvement. Two types of metamaterial namely EBG and DGS are studied. First, embedding metallo EBG (EMEBG) is used to eliminate ripples in the operating band and also further reducing the antenna size by more than 30% as compared to the proposed patch. The antenna design provides an impedance bandwidth of more than 33 GHz. Second, four arms spiral defected ground structure (SDGS) is used as a ground plane with four arms to further improve the antenna performance. The SAMC reduced the antenna size by more than 48% as compared to the proposed antenna patch, increased bandwidth, and decreased the cross polarization effect. Finally, embedded EBG together with SDGS ground plane are studied to take advantages of both techniques.
2011-04-28
PIER Letters
Vol. 23, 99-107
Circularly-Polarized Stacked Annular-Ring Microstrip Antenna
Monica Ramirez and Josep Parron
In this paper, we propose the aperture feeding as a technique for bandwidth enhancement of multi-band microstrip ring antennas. In particular, we present a dual-band stacked annular-ring microstrip antenna fed by four bow-tie apertures with circular polarization. Furthermore, we show that the size and shape of the substrate that supports the radiating elements of the antenna plays an important role in the quality of the axial ratio.
2011-04-28
PIER
Vol. 116, 123-136
The Effect of Ply Orientation on the Performance of Antennas in or on Carbon Fiber Composites
Amir Galehdar , Wayne Rowe , Kamran Ghorbani , Paul J. Callus , Sabu John and Chun H. Wang
In this paper, the anisotropic conductivity effect of Quasi-Isotropic Carbon Fiber laminates on new type of conformal load-bearing antenna structure (CLAS), with slots being cut through a carbon fibre reinforced polymer (CFRP) laminate, is presented. The conductivity of a quasi-isotropic IM7/977-3 CFRP laminate is measured using the waveguide technique. The results show that orientation of the surface ply relative to the polarization of the E-field has a major influence on the reflectivity. This difference can be attributed to the fact that carbon fibres oriented parallel to the E-field plies behave as good conductors while off-axis plies as lossy dielectric layers with a finite conductivity. This anisotropic behavior of the ply layers is shown to have a distinctive influence on the operation of both microstrip patch and slot antennas.
2011-04-28
PIER
Vol. 116, 107-121
A Rigorous Treatment of Vertical Dipole Impedance Located Above Lossy Dps, Mng, Eng, and DNG Half-Space
Younes Radi , Saeid Nikmehr and Shahram Hosseinzadeh
In this paper, accurate analytical expressions for the impedance of vertical electric and magnetic dipoles which are located over the half-space materials of arbitrary permittivity and permeability are developed. In this regard, the impedance variations are expressed in integral forms. For metamaterial half-space, a proper expression for approximating the Fresnel reflection coefficient is proposed. Using this approximate expression, the impedance integrals are analytically solved, and exact formulas for impedance variations are obtained. The results for the metamaterial half-spaces are compared with the case of natural materials (positive permittivity and permeability), and key differences are explained. The in uences of sign changing in permeability of the half-space material on the impedance of vertical dipole are studied, and the results are validated by comparison with those of numerical solution of integrals. It is shown that for elevated dipoles over materials with high and/or low conductivities, the results of both methods are in complete agreement. For vertical dipoles above low loss materials, the results are somewhat identical. However, a better agreement could be obtained using higher order approximations for the integrand.
2011-04-27
PIER
Vol. 116, 81-106
Consistent Formalism for the Momentum of Electromagnetic Waves in Lossless Dispersive Metamaterials and the Conservation of Momentum
Yingran He , Katus Maski and Sailing He
A new formalism for electromagnetic and mechanical momenta in a metamaterial is developed by means of the technique of wave-packet integrals. The medium has huge mass density and can therefore be regarded as almost stationary upon incident electromagnetic waves. A clear identification of momentum density and momentum flow, including their electromagnetic and mechanical parts, is obtained by employing this formalism in a lossless dispersive metamaterial (including the cases of impedance matching and mismatching with vacuum). It is found that the ratio of the electromagnetic momentum density to the mechanical momentum density depends on the impedance and group velocity of the electromagnetic wave inside the metamaterial. One of the definite results is that both the electromagnetic momentum and the mechanical momentum in the metamaterial are in the same direction as the energy flow, instead of in the direction of the wave vector. The conservation of total momentum is verified. In addition, the law of energy conservation in the process of normal incidence is also verified by using the wave-packet integral of both the electromagnetic energy density and the electromagnetic p
2011-04-26
PIER B
Vol. 29, 393-408
Transient Solution for Lossy Transmission Line by Means of Orthogonal Projection Method
Hengxu Ha , Jing Cai , Zhi-Qian Bo and Bo Chen
A novel electromagnetic transient analysis technique by means of the orthogonal projection method for lossy transmission line is proposed. By employing the proposed method, the traveling waves propagating from one terminal to another can be quickly obtained with less amount of computation at considerably large steps. First of all, the differential function to variable time can be approximated to be the convolution with a fixed vector relates to a certain set of orthogonal basis, e.g. Daubechies' basis. The partial differential telegraph equations related to both variable time t and distance x are then transformed to be differential equations only related to x. The solution of such equations can be obtained accordingly. The discrete coefficients of propagation function for lossy line are obtained as well, by which the propagating traveling waves can be calculated precisely at considerably large sampling periods with less amount of computation.
2011-04-26
PIER M
Vol. 18, 73-88
Coupled Waves in the Periodic Composite Magnetic-Semiconducting Media
Muhammad Najam Shaikh and Rashid Ali
The Alfven-spin and helicon-spin waves are analyzed in both sinusoidal periodic and layered periodic structures. These periodic structures are composed of a single composite medium having the properties of both magnetic and semiconducting materials. Numerical analysis of the dispersion relations presented for these periodic structures shows band-gap effects. The idea of these band-gap effects could be utilized in the design of periodic structures operating at microwave frequencies. Extreme cases for the decoupled independent modes in the absence of magnetization or carriers are also discussed.
2011-04-26
PIER
Vol. 116, 65-79
Magnetic Resonance Brain Image Classification by an Improved Artificial Bee Colony Algorithm
Yudong Zhang , Lenan Wu and Shuihua Wang
Automated and accurate classification of magnetic resonance (MR) brain images is a hot topic in the field of neuroimaging. Recently many different and innovative methods have been proposed to improve upon this technology. In this study, we presented a hybrid method based on forward neural network (FNN) to classify an MR brain image as normal or abnormal. The method first employed a discrete wavelet transform to extract features from images, and then applied the technique of principle component analysis (PCA) to reduce the size of the features. The reduced features were sent to an FNN, of which the parameters were optimized via an improved artificial bee colony (ABC) algorithm based on both fitness scaling and chaotic theory. We referred to the improved algorithm as scaled chaotic artificial bee colony (SCABC). Moreover, the K-fold stratified cross validation was employed to avoid overfitting. In the experiment, we applied the proposed method on the data set of T2-weighted MRI images consisting of 66 brain images (18 normal and 48 abnormal). The proposed SCABC was compared with traditional training methods such as BP, momentum BP, genetic algorithm, elite genetic algorithm with migration, simulated annealing, and ABC. Each algorithm was run 20 times to reduce randomness. The results show that our SCABC can obtain the least mean MSE and 100% classification accuracy.
2011-04-25
PIER B
Vol. 29, 355-392
Approximate Boundary Relations on Anisotropic Sheets
A. Burak Polat
Approximate boundary relations on general anisotropic sheets of arbitrary shape as well as the special case when they are backed by a perfect electrical conductor are investigated based on a generalization of the procedure introduced by Idemen in 1993 for uniaxially anisotropic planar sheets to general anisotropic and arbitrarily shaped surfaces. The ranges of validity of the approximations in the methodology are also tested numerically for the impedance boundary condition obtained in the case of a PEC backed uniaxially anisotropic sheet.
2011-04-22
PIER B
Vol. 29, 339-354
Multiband Fractal-Like Antennas
Rao Shahid Aziz , Majeed Alkanhal and Abdel-Fattah Sheta
In this paper, new multiband fractal-like antennas are proposed. The proposed multiband antenna design is based on a methodology that utilizes the self transformation principle of fractal-like rectangular profiles to generate multiband operation. The proposed monopole-type antennas are built on a partial ground plane and fed through a microstrip feed line. The analytical design procedures are straightforward and can be applied to any practical antenna structure to operate at multiple preselected bands. The developed methodology has been used to design antennas operating at three, four, and five preselected practical bands. Numerical simulations are utilized to verify the simple design procedures of the proposed multiband antenna structures. The triple-band and the quad-band structures have been realized on FR4 substrate to prove the concept. Simulation and experimental results are in good agreement and demonstrate the performance of the design methodology and the proposed antenna structures.
2011-04-20
PIER Letters
Vol. 23, 89-98
An Improved Design of Hi-LO Microstrip Lowpass Filter Using Uniplanar Double Spiral Resonant Cells
Ke Lu , Guang-Ming Wang , Ya-Wei Wang and Xiong Yin
A novel microstrip resonator, uniplanar double spiral resonant cell (UDSRC) is analytically investigated to access the controllability of its bandstop property and one hi-lo microstrip lowpass filter using UDSRCs with enhanced frequency selectivity and rejection level is also presented. The equivalent circuit corresponding to each part of UDSRC is initially proposed to describe its special bandstop property with two transmission zeros. Furthermore, analytical theories of each circuit element are introduced and the comparison of the calculated results and the fullwave-simulated ones is done to verify the proposed equivalent circuit and the analytical theories. Both the analytical investigation and parametric analysis indicate that the two transmission zeros can be controlled through tuning the primary geometrical parameters. Thus, the given property is utilized by embedding two different UDSRCs in the feed lines of the reference filter. Both the simulated and measured results indicate that the frequency selectivity and rejection level are improved effectively. The frequency selectivity of the fabricated prototype is about 65.8 dB/GHz while the stopband rejection level is more than 10dB from 2.08 GHz to 6.62 GHz. Compared with the reference filter, the performance is improved greatly while the transversal dimension of the feed line is not increased because UDSRCs are completely embedded in the feed lines.
2011-04-20
PIER
Vol. 116, 49-63
A Memory Efficient and Fast Sparse Matrix Vector Product on a GPU
Adam Dziekonski , Adam Lamecki and Michal Mrozowski
This paper proposes a new sparse matrix storage format which allows an efficient implementation of a sparse matrix vector product on a Fermi Graphics Processing Unit (GPU). Unlike previous formats it has both low memory footprint and good throughput. The new format, which we call Sliced ELLR-T has been designed specifically for accelerating the iterative solution of a large sparse and complex-valued system of linear equations arising in computational electromagnetics. Numerical tests have shown that the performance of the new implementation reaches 69 GFLOPS in complex single precision arithmetic. Compared to the optimized six core Central Processing Unit (CPU) (Intel Xeon 5680) this performance implies a speedup by a factor of six. In terms of speed the new format is as fast as the best format published so far and at the same time it does not introduce redundant zero elements which have to be stored to ensure fast memory access. Compared to previously published solutions, significantly larger problems can be handled using low cost commodity GPUs with limited amount of on-board memory.
2011-04-19
PIER Letters
Vol. 23, 75-87
C-Band Pulsed Solid State Power Amplifier for Spaceborne Applications
Jolly Dhar , S. K. Garg , Raj Kumar Arora , B. V. Bakori and S. S. Rana
The basic applications of pulsed solid state power amplifier are for airborne and spaceborne pulsed Radar and these applications have always demanded well performance over different environmental conditions. The success of the electronic systems for these applications relies on the ability to design high performance; reliable and high yield circuits, which will function against the demanded environmental specifications. This paper describes the detailed design and development of a spaceborne C-band pulsed solid state power amplifier to deliver 12-watt output power, 45 dB gain with 22 microsecond pulse width and 8% duty cycle. The salient features of this paper are drain modulated pulse driver circuit design, non-linear design of the power stages and electronic package design. The paper also describes pulsed SSPA configuration, RF section, Electronic Power Converter Module, RF design and other space aspects to realize the pulsed solid state power amplifier. It is fabricated on the three-layer metallized alumina substrate, and integrated with power converter module; and tested under simulated space environment. The test result validates the design specification of the pulsed solid state power amplifier, implemented at miniaturized configuration.
2011-04-19
PIER C
Vol. 21, 113-127
Design and Implementation of an X-Band Pulsed Solid-State Power Amplifier with High Power and High Efficiency Using Radial Waveguide Combiner
Hui Chen , Xin-Feng Ji , Lu-Jun Jiang and Yu-Xing Zhang
An X-band active radial-waveguide pulsed power amplifier (PA) with high power and high power added efficiency (PAE) is designed, fabricated, and measured in this paper. A bandwidth of 1000 MHz with peak power level of 53.2 dBm at the frequency 9.85 GHz, under the condition of 4 KHz pulse repeat frequency (PRF) and 10% of duty cycle, has been obtained by five-way radial waveguide power combiner. Key features of this combined device are its maximum PAE (>43.6%) and combining efficiency (>92.8%). From 9.5 to 10.5 GHz, the pulsed solid-state power amplifier (PSSPA) can provide a minimum output power level 51.4 dBm, which operates on the repeat frequency 4 KHz, duty cycle 10%. The gain varied between 41.4 and 43.1 dB at the desired frequency range, with only less than ±0.9-dB gain variation, which displayed a flat gain ripple. The PAE of the active combiner fluctuated between 36.5% and 43.6% as frequency varied from 9.5 to 10.5 GHz.
2011-04-19
PIER C
Vol. 21, 99-111
Microstrip Bandpass Filters Using Dual-Mode Resonators with Internal Coupled Lines
Changzhou Hua , Chunhong Chen , Chen Miao and Wen Wu
This paper presents a new dual-mode stub-loaded resonator, which consists of a microstrip resonator with internal coupled lines and an open-circuit stub. Based on the odd- and even-mode equivalent circuits, the resonant characteristics of the proposed microstrip resonator are investigated. It is found that the fundamental even-mode resonant frequency of the proposed resonator can be flexibly controlled while the fundamental odd-mode resonant frequency remains unaffected. Then, based on the proposed resonator, three compact dual-mode bandpass filters, namely filer A, filter B and filter C, are designed, fabricated and measured to validate the design concept. Filters A and B demonstrate opposite asymmetric responses with two transmission poles in the passband and a transmission zero in the stopband. Filter C has three transmission poles in the passband and two transmission zeros respectively in the lower and upper stopbands to enhance selectivity. The experimental results show excellent agreement with the theoretical simulation results.