Search Results(13670)

2010-07-21
PIER B
Vol. 23, 165-180
Theoretical Analysis of a Passive Acoustic Brain Monitoring System
Nikolaos P. Asimakis , Irene Karanasiou , P. K. Gkonis and Nikolaos Uzunoglu
An approach based on acoustics and its theoretical analogies to electromagnetism is used in the present research to study the detection of the acoustic wave energy radiated by the thermal random motion of material particles of the brain during activation or caused by pathology. Pressure and particle velocity are calculated in analytical mathematical forms for the case of human brain monitoring, which can be implemented by a prototype passive acoustic brain monitoring system (PABMOS). Representing theoretically the configuration of this approach, a sphere is used to model the human head and an internal point source in order to simulate potential pressure alterations due to intracranial abnormalities or local functional activations. Finally, numerical results concerning the particle velocity (pressure field distribution) at the surface of the head model, which can implicitly be measured by the suitable piezoelectric sensors of the system, for arbitrary positions of the internal source, are presented.
2010-07-21
PIER B
Vol. 23, 147-164
Theoretical Comparative Studies of Cross-Section Evaluation in Erbium-Doped Optical Fibers
Maryam Karimi and Faramarz E. Seraji
In this paper, we introduce a different approach of previously reported method to determine absorption and emission cross-sections (δa and δe), and dopant concentration in Erbium doped optical fibers (EDOFs) with low background loss (α). We call this new method as variant input single cutback method (VISCM). There is technical similarity between VISCM and conventional cutback method (CCM) for determination of cross-sections, but in former pump and signal powers are not used together. We numerically verify the effect of different parameters such as input power, background loss, and EDOF amplifier cutback length on the cross-sections using VISCM and CCM. We also present the simulation results of maximum gain and optimum length using obtained cross-sections by two methods. We show that the VISCM presents more accuracy than that of CCM in any conditions. In the presence of α, both CCM and VISCM give not actual but pseudo values for the δa and δe. Using pseudo parameters values obtained by VISCM for α < 10 dB/km, the error of maximum gain and optimum length of designed EDOF is shown negligible.
2010-07-21
PIER
Vol. 106, 163-176
Multi-Wavelength Fiber Optical Parametric Oscillator Based on a Highly Nonlinear Fiber and a Sagnac Loop Filter
Daru Chen and Bing Sun
A novel multi-wavelength fiber optical parametric oscillator (MW-FOPO) with a ring cavity structure is proposed. In the ring cavity of the MW-FOPO, a Sagnac loop filter which is formed by a 3-dB optical coupler, a polarization controller and a segment of polarization maintained fiber is used as the comb filter, and a segment of highly nonlinear fiber is used as the gain medium. Multi-wavelength lasing of the MW-FOPO with a wavelength spacing of about 0.8nm is achieved and its power stability at room temperature is demonstrated by measuring peak power fluctuation within 42 minutes for 5 lasing wavelengths. The output spectrum of the MW-FOPO covers a large wavelength region from 1500nm to 1610 nm. A comparison of the output spectra between the MW-FOPO and the multi-wavelength Erbium-doped fiber laser is also presented.
2010-07-21
PIER
Vol. 106, 147-162
A New Calculation Method for the Characteristic Impedance of Transmission Lines with Modified Ground Structures or Perturbation
Jongsik Lim , Jun Lee , Jaehoon Lee , Sang-Min Han , Dal Ahn and Yongchae Jeong
In this paper, a new calculating method for the characteristic impedance (Zc) of transmission lines with perturbation and periodic modified ground structure (MGS), such as defected ground structure (DGS), photonic bandgap (PBG), and substrate integrated artificial dielectric (SIAD), is discussed. The proposed method is based on simple transmission line theories and proper related equations. The previous method to find Zc of transmission lines with MGS or perturbation produces the fluctuating Zc value depending on frequency, while the proposed method results in a constant value without frequency-dependence. As examples, several microstrip lines with DGS, PBG, and SIAD structure are simulated and measured, and their Zc values are calculated from S-parameters by the previous and proposed methods. It is shown that the Zc obtained by the proposed method is much more reliable than that calculated by the previous method for all examples.
2010-07-20
PIER
Vol. 106, 121-145
Propagation Analysis and Deployment of a Wireless Sensor Network in a Forest
Jose Antonio Gay-Fernandez , Manuel Garcia Sanchez , Inigo Cuinas , Ana Vazquez Alejos , Javier Garcia Sanchez and Jose Luis Miranda-Sierra
A complete study for the deployment of a wireless sensor network in a forest based on ZigBee is presented in this paper. First, due to the lack of propagation models for peer to peer networks in forests, propagation experiments were carried out to determine the propagation model. This model was then used for planning and deploying an actual wireless sensor network. The performance of the network was compared with the expected theoretical behavior to extract some conclusions that are presented in the paper. Finally, some general conclusions, as an estimation of the minimum number of routers necessary to cover a given area, are extracted from the experiments and presented in the paper.
2010-07-16
PIER B
Vol. 23, 131-146
Modeling and Characterization of Frequency and Temperature Variation of Complex Permeability of Ferrite LTCC Material
Nelu Blaz , Andrea Maric , Goran Radosavljevic , Ljiljana Zivanov , Goran Stojanovic , Ibrahim Atassi and Walter Smetana
This paper presents modeling of the complex permeability spectra, fabrication and a wide frequency range characterization of a toroidal LTCC ferrite sample. A commercial ferrite tape ESL 40012 is used, and standard LTCC (Low Temperature Co-fired Ceramic) processing has been applied to the sample fabrication. The characterization was performed using a short coaxial sample holder and a vector network analyzer in the frequency range from 300 kHz to 1 GHz, at different temperatures. Using the model of the complex permeability spectra dispersion parameters of ferrite LTCC material has been determined for various temperatures. Characteristics of test samples are compared with modeled results and commercially available toroid made of similar NiZn ferrite material.
2010-07-14
PIER B
Vol. 23, 109-129
Resonance Wave Scattering by a Strip Grating Attached to a Ferromagnetic Medium
А. V. Brovenko , Elena D. Vinogradova , P. N. Мelezhik , Anatoly Poyedinchuk and A. S. Troschylo
The diffraction of a uniform unit-amplitude E-polarized plane wave is considered in the case of its normal incidence on a strip periodic metal grating placed on the anisotropic hyrotropic ferromagnetic half-space boundary. The Dirichlet boundary conditions on the grating strips, the medium interface conjugation conditions, the Meixner condition that the energy is finite in any confined volume and the radiation condition are applied, and the boundary value diffraction problem in terms of Maxwell's (Helmholtz) equations is equivalently reduced to the dual system of functional equations with exponential kernel. The system is shown to be the Riemann-Hilbert problem in analytic function theory with the conjugation coefficient differing, in general, from ``-1" and dependent on the incident wave frequency. An analytical regularization procedure based on the Riemann-Hilbert boundary value problem solution with the following use of the Plemelle-Sokhotsky formulas is suggested, resulting in the system of linear algebraic equations of the second kind with a compact operator. For vthese systems, the truncation technique possibility has been shown. Calculation algorithms and simulation packages in terms of C++ language have been developed. As a result, the reflection coefficient performance has been studied over sufficiently wide ranges of frequency and constitutive and geometrical parameters of the electrodynamical systems of interest. The frequency bands of the reflection coefficient resonant behavior have been established and examined. A numerical analytical model of these resonances has been proposed.
2010-07-14
PIER Letters
Vol. 16, 53-60
A Robust Beamformer Based on Weighted Sparse Constraint
Yipeng Liu , Qun Wan and Xiaoli Chu
Applying a sparse constraint on the beam pattern has been suggested to suppress the sidelobe level of a minimum variance distortionless response (MVDR) beamformer. In this letter, we introduce a weighted sparse constraint in the beamformer design to provide a lower sidelobe level and deeper nulls for interference avoidance, as compared with a conventional MVDR beamformer. The proposed beamformer also shows improved robustness against the mismatch between the steering angle and the direction of arrival (DOA) of the desired signal, caused by imperfect estimation of DOA.
2010-07-14
PIER C
Vol. 14, 213-225
Dual Band-Notched Design of Rectangular Monopole Antenna for UWB Applications
Chao Deng , Yong-Jun Xie and Junfei Yuan
An ultra wideband (UWB) coplanar waveguide (CPW) fed rectangular monopole antenna, which is of band notched characteristic for Wireless Local Area Network (WLAN), Worldwide inter-operability for Microwave Access (WiMAX) and the C-band satellite communications, is proposed, fabricated and measured. In order to obtain the desired dual band rejections, a piece of pentagonal slotline and a pair of inverted L-shaped stubs are loaded on the CPW fed rectangular monopole antenna of enhanced impedance bandwidth. The antenna is printed on the FR4 substrate of 40 mm (width) × 41 mm (length) × 0.5 mm (thickness), and is optimized by ANSOFT HFSS. A prototype is fabricated according to the optimized parameters values, and the antenna characteristics are measured. The results show that the antenna is of UWB characteristic and exhibits band rejection of 3.2-4.25 GHz and 5.1-6.15 GHz, which covers WLAN, WiMAX, and C-band satellite communications.
2010-07-14
PIER C
Vol. 14, 197-212
Source Location Estimation Using Phaseless Measurements with the Modulated Scattering Technique for Indoor Wireless Environments
Jung-Hwan Choi , Byoung-Yong Park and Seong-Ook Park
This paper proposes a technique of the source location estimation with the modulated scattering technique (MST) for indoor wireless environments. The uniform circular scatterer array (UCSA) that consist of five optically modulated scatterers as array elements and a dipole antenna at the center of the UCSA is employed for estimating a source location from the impinging signal. In contrast with a conventional uniform circular array (UCA), the proposed method using the MST needs only one RF path. Also, the plane-wave assumption of the impinging signal is not necessary for an array signal processing because the proposed method is based on a phaseless measurement. Therefore, the proposed method can be applied in short-range LOS and NLOS environments that the plane-wave signal cannot be formed. A source location is estimated by using a simple estimation algorithm based on the power difference of the scattering signals modulated by two scatterers on the UCSA. The power difference is caused by different propagation losses between a source and each scatterer. The performance of the proposed method is demonstrated by measuring the angles of the incoming signals in the anechoic chamber and by comparing the estimated angles with the simulated results.
2010-07-14
PIER M
Vol. 13, 133-143
Higher Order Hierarchical Legendre Basis Functions Application to the Analysis of Scattering by Uniaxial Anisotropic Objects
Chaojie Lv , Yan Shi and Chang-Hong Liang
An efficient technique for the analysis of scattering by uniaxial anisotropic objects is presented. The technique is based on the method of higher order MoM of the surface integral equations. This higher order MoM solution uses the higher order hierarchical basis functions which are based on the modified Legendre polynomials. Numerical results are given to demonstrate that the higher order hierarchical basis functions are more accurate and efficient in the calculations of uniaxial anisotropic objects scattering problem than the low-order basis function.
2010-07-13
PIER B
Vol. 23, 83-107
Design of Time-Modulated Linear Arrays with a Multi-Objective Optimization Approach
Siddharth Pal , Swagatam Das and Aniruddha Basak
Time-modulated antenna arrays attracted the attention of researchers for the synthesis of low/ultra-low side lobes in recent past. This article proposes a Multi-objective Optimization (MO) framework for the design of time-modulated linear antenna arrays with ultra low maximum Side Lobe Level (SLL), maximum Side Band Level (SBL) and main lobe Beam Width between the First Nulls (BWFN). In contrast to the conventional optimization-based methods that attempt to minimize a weighted sum of maximum SLL, SBL, and BWFN we treat these as three different objectives that are to be achieved simultaneously and use one of the best known Multi-Objective Evolutionary Algorithms (MOEAs) of current interest called MOEA/D-DE (Decomposition based MOEA with Differential Evolution operator) to determine the best compromise among these three objectives. Unlike the single-objective approaches, the MO approach provides greater flexibility in the design by yielding a set of equivalent final solutions from which the user can choose one that attains a suitable trade-off margin as per requirements. We compared time-modulated antenna structures with other linear array synthesis such as the excitation method and the phase-position synthesis method on the basis of the approximated Pareto Fronts (PFs) yielded by MOEA/D-DE and the best compromise solutions determined from the Pareto optimal set with a fuzzy membership-function based method. The final results obtained with MOEA/D-DE were also compared with the results achieved by three state-of-the-art single objective optimization algorithms. Our simulation studies on three significant instantiations of the design problem reflect the superiority of the MOEA-based design of time-modulated linear arrays.
2010-07-13
PIER B
Vol. 23, 69-82
Exact Electromagnetic Field Excited by a Vertical Magnetic Dipole on the Surface of a Lossy Half-Space
Mauro Parise
A rigorous analytical procedure is developed that allows the exact evaluation of the complete integral representations for the time-harmonic electromagnetic (EM) field components generated by a vertical magnetic dipole (VMD) lying on the surface of a flat and homogeneous lossy half-space. Closed-form expressions for the radial distributions of the EM field components induced on the surface of the half-space are provided in terms of exponential functions and modified Bessel functions. Such expressions make it possible to overcome the limitations implied by the previously published quasi-static solutions, which are valid only in the low-frequency range. Numerical results are presented to show where the quasi-static approximations deviate from the exact solutions for a given homogeneous medium as frequency is changed. The computed amplitude and phase frequency spectra of the EM field components demonstrate that the quasi-static approach fails at frequencies higher than 1 MHz, and that, in particular, it leads to underestimating the EM field strength. Finally, it is also shown that at a frequency equal to or greater than 10 MHz excellent results in terms of accuracy may be obtained by using the high-frequency asymptotic forms of the exact solutions.
2010-07-13
PIER Letters
Vol. 16, 45-52
A Novel CPW Dual Passband Filter Using the Split-Modes of Loaded Stub Square Loop Resonators
Hao-Jia Lin , Xiao-Wei Shi , Xin Huai Wang , Cun-Long Li and Qiao Li
This paper presents a novel coplanar waveguide (CPW) dual passband filter using the split-modes of the loaded stub square loop resonators. With the CPW feeding line, two microstrip stub resonators built on the rear sides are used to suppress the first even resonance. The modes splitting characteristics of the proposed structure are analyzed. A dual passband filter covering center frequencies of 4.8 GHz and 6 GHz is fabricated to verify the validity of the methodology. Good agreement between simulated and measured results is demonstrated.
2010-07-13
PIER Letters
Vol. 16, 35-44
A Racket-Shaped Slot UWB Antenna Coupled with Parasitic Strips for Band-Notched Application
Min Zhang , Ying-Zeng Yin , Jie Ma , Yan Wang , Wen-Chao Xiao and Xue-Jie Liu
A racket-shaped slot ultra-wideband (UWB) antenna coupled with parasitic strips for band-notched application is proposed in this paper. By attaching a pair of parasitic rectangular strips on the bottom of the substrate, a band-notched characteristic is well realized. Adjusting the length, width of the two strips and the distance between them, a band-rejected filter characteristic at the WLAN operation in 5.15-5.825 GHz frequency band can be obtained. The fabricated antenna has a small size of 20×37.5 mm2. Good agreement is achieved between the simulated and measured results, both of which show an ultra-wide impedance bandwidth from 3.1 to 10.6 GHz for VSWR less than 2 except the bandwidths of 5.15-5.825 GHz for WLAN.
2010-07-13
PIER M
Vol. 13, 121-131
Full-Wave Analysis of Dielectric Rectangular Waveguides
Jigyasa Sharma and Asok De
In this paper the characteristic equations of the Eymn and Exmn modes of the dielectric rectangular waveguide have been derived using the mode matching technique. No assumptions have been taken in the derivations which have been straight forwardly done. Two ratios have been introduced in the characteristic equations and the new set of characteristic equations thus obtained are then plotted and graphical solutions are obtained for the propagation parameters assuming certain numerical values for the introduced ratios. The results have then been compared to those obtained by Marcatilli and Goell for rectangular dielectric waveguides. The comparisons depict a good agreement in the three methods at frequencies well above cut-off.
2010-07-13
PIER
Vol. 106, 107-119
Shaping the Radiation Pattern with MU and Epsilon-Near-Zero Metamaterials
Bo Wang and Kama Huang
In this paper, mu and epsilon-near-zero (MENZ) metamaterials are used to convert the waves emitted from an embedded line source to various waveforms. The simulation results show that the converted waveforms are consistent with the exit face shape of the metamaterials. The power distributions in different beams are dependent on the length proportion of the exit faces due to its impedance matching with the surrounding media, which is different from the epsilon-near-zero (ENZ) metamaterials. A numerical verification with the finite element method (FEM) was presented, followed by physical insights into this phenomenon and theoretical analysis. We also propose some potential applications, including high directive emissions, multi-beams emissions.
2010-07-12
PIER M
Vol. 13, 109-119
Parameter Extraction for Microwave Coupled Resonator Filters Using Rational Model and Optimization
Jie Peng , Bian Wu , Chang-Hong Liang and Xue-Feng Li
A method is presented for the parameter extraction of microwave coupled resonator filters. The method is based on the estimation of a rational model of the filters. From these rational functions, a circuit network having the previously know topology is optimized. Two simple and efficient error functions are used to reduce the computational effort of the optimization while improving the speed and robustness of diagnosis process for lossless and lossy filters, respectively. Two numerical examples are presented to demonstrate the efficiency of the proposed technique. One deals with numerical simulation data from a full-wave electromagnetic simulation and the other one uses the measured data.
2010-07-12
PIER
Vol. 106, 91-106
Design of CMOS Quadrature VCO Using on-Chip Trans-Directional Couplers
Ching-Ian Shie , Jui-Ching Cheng , Sheng-Chun Chou and Yi-Chyun Chiang
This work presents a quadrature voltage-controlled oscillator (QVCO) realized by on-chip trans-directional (TRD) couplers. The TRD coupler is implemented by sections of parallel-coupled lines connected by shunt capacitors periodically. The TRD couplers allow decoupling the DC path between input and output. Thus, it can make connections with active circuits easier, eliminating some off-chip biasing circuits. Since the quadrature signals are generated by 90°hybrid couplers, the oscillator core can be optimized for circuit performance without considering the generation of quadrature signals. A Ka band QVCO fabricated in CMOS 0.18 μm technology was designed to verify the effectiveness of the proposed QVCO structure. The measurement results reveal that the quadrature output signals of QVCO have about -1.52 dBm output powers with less than 1 dB amplitude imbalance and less than 6°phase difference in the frequency range of 31.9 to 32.7 GHz. The best measured phase noise of the QVCO is -110.6 dBc/Hz at 1 MHz offset from the center frequency. The figure-of-merit of the circuit is 187.5 dBc/Hz.
2010-07-12
PIER
Vol. 106, 75-89
Through-the-Wall Target Localization with Time Reversal MUSIC Method
Wenji Zhang , Ahmad Hoorfar and Lim Li
Time Reversal Multiple Signal Classification (TR-MUSIC) method is studied and adapted for the detection and localization of multiple targets behind the wall in this paper. TR-MUSIC does not involve the FDTD solver for the implementation of the backpropagation of the time reversed field and is very computational efficient. The Green's function vectors for the computation of the TR-MUSIC pseudo-spectrum is efficiently evaluated with the saddle point method for a homogeneous wall. By employing the null space of the multistatic response matrix, simultaneous localization of multiple targets behind the wall can be achieved by TR-MUSIC method. Numerical results are presented to show the effectiveness of through-the-wall imaging (TWI) with TR-MUSIC method.