Search Results(13673)

2012-06-26
PIER Letters
Vol. 33, 73-81
A High Attenuation Electromagnetic Pulse Protector with Gdt, Mov and Parallel Coupled BPF on High Thermal Conductivity Substrates
Ming-Jer Jeng , Atanu Das , Liann-Be Chang , Ching-Chi Lin , Yi-Cherng Ferng , Chien-Fu Shih , Sheng-You Liao , Shu-Tsun Chou , Ji-Chyun Liu and Lee Chow
An alternative approach for robust electromagnetic pulse (EMP) protection circuit was proposed by using a parallel coupled band-pass filter (BPF) with high thermal conductivity AlN substrate in between with a traditional gas discharge tube (GDT) and fast response metal oxide varistor (MOV). This proposed configuration can suppress slow as well as fast voltage surges. The fabricated BPF with a center frequency of 2.5 GHz on the high thermal conductive (180~200 W/m·K) AlN substrate could efficiently suppress high power over voltage surge. Through the purposed cascade protection configuration, it is observed that 6KV ESD fast introduced pulse (5 ns/50 ns) and 4 KV lightning surge pulse(1 us/50 us) were attenuated to 511V and 396 V, respectively, and that is capable to be applied to an EMP protection circuit in the front end of a linear amplifier applications.
2012-06-26
PIER
Vol. 129, 365-385
Wideband Circularly Polarized UHF RFID Reader Antenna with High Gain and Wide Axial Ratio Beamwidths
Ping Wang , Guangjun Wen , Jian Li , Yongjun Huang , Liu Yang and Qing Zhang
A broadband circularly polarized patch antenna with high gain and wide axial ratio beamwidths is proposed for ultra-high-frequency (UHF) RF identification (RFID) applications in this paper. The antenna is composed of a square patch, a feed network printed on the bottom side of the substrates and an antenna radome. The CP radiation of the proposed antenna is excited by four cylinder probes which transmit four signals that have equal amplitude with quadrature phase difference (0˚, 90˚, 180˚, and 270˚) generated from the feed network. To obtain an optimum peak gain and a broad CP bandwidth, 100 Ω isolation resistor is omitted in the feed network for obtaining high radiation efficiency, and the effects of varying the feed positions and dimensions of the various parameters on the antenna performances are respectively investigated. Simulation results are compared with the measurements, and a good agreement is obtained. The measured results show that the proposed antenna can provide broad impendence bandwidth of 19.7% (815-993 MHz) (reflection coefficient less than -15 dB), a maximum gain of 9.65 dBi, and a 3-dB axial ratio (AR) bandwidth of about 11% (860-960 MHz). The results indicate that the proposed antenna is an excellent candidate for UHF RFID reader system. At last, read performance of the proposed antenna array in RFID systems is presented, which verify the superior features of the proposed antenna in practical RFID system applications.
2012-06-26
PIER
Vol. 129, 345-363
Comparative Evaluation on Power-Speed Density of Portable Permanent Magnet Generators for Agricultural Application
Norhisam Bin Misron , Suhairi Rizuan Che Ahmad , Raja Nor Firdaus , Aravind Vaithilingam Chockalingam , Hiroyuki Wakiwaka and Masami Nirei
The comparative evaluation based on the power speed density of several types of portable Permanent Magnet Generator (PMG) considered for agricultural applications is presented. These generators are purposely designed to be used in agriculture sectors and thereby it should be of lightweight, small in size and ease to use. Six different generator topologies are developed for investigation of such purposes. A number of design parameters are considered to analyze the performance characteristics for each type of developed PMG. Based on the power speed density factor that is used to describe better generator performance, the suitable PMG for the agricultural application is identified through a comprehensive evaluation.
2012-06-26
PIER
Vol. 129, 315-343
Scattering of Electromagnetic Spherical Wave by a Perfectly Conducting Disk
Kohei Hongo , Allah Ditta Ulfat Jafri and Qaisar Abbas Naqvi
The scattering of electromagnetic spherical wave by a perfectly conducting circular disk is studied by using the method of Kobayashi Potential (abbreviated as KP method). The formulation of the problem yields the dual integral equations (DIE). The spherical wave is produced by an arbitrarily oriented dipole. The unknowns are the induced surface current (or magnetic field) and the tangential components of the electric field on the disk. The solution for the surface current is expanded in terms of a set of functions which satisfy one of a pair (equations for the magnetic field) of Maxwell equations and the required edge condition on the surface of the disk. At this stage we have used the vector Hankel transform. Applying the projection solves the rest of the pair of equations. Thus the problem reduces to the matrix equations for the expansion coefficients. The matrix elements are given in terms of the infinite integrals with a single variable and these may be transformed into infinite series that are convenient for numerical computation. The far field patterns of the scattered wave are computed and compared with those computed based on the physical optics approximation. The agreement between them is fairly good.
2012-06-26
PIER
Vol. 129, 287-313
Convolution Back-Projection Imaging Algorithm for Downward-Looking Sparse Linear Array Three Dimensional Synthetic Aperture Radar
Xueming Peng , Weixian Tan , Yanping Wang , Wen Hong and Yirong Wu
General side-looking synthetic aperture radar (SAR) cannot obtain scattering information about the observed scenes which are constrained by lay over and shading effects. Downward-looking sparse linear array three-dimensional SAR (DLSLA 3D SAR) can be placed on small and mobile platform, allows for the acquisition of full 3D microwave images and overcomes the restrictions of shading and lay over effects in side-looking SAR. DLSLA 3D SAR can be developed for various applications, such as city planning, environmental monitoring, Digital Elevation Model (DEM) generation, disaster relief, surveillance and reconnaissance, etc. In this paper, we give the imaging geometry and dechirp echo signal model of DLSLA 3D SAR. The sparse linear array is composed of multiple transmitting and receiving array elements placed sparsely along cross-track dimension. The radar works on time-divided transmitting-receiving mode. Particularly, the platform motion impact on the echo signal during the time-divided transmitting-receiving procedure is considered. Then we analyse the wave propagation, along-track and cross-track dimensional echo signal bandwidth before and after dechrip processing. In the following we extend the projection-slice theorem which is widely used in computerized axial tomography (CAT) to DLSLA 3D SAR imaging. In consideration of the flying platform motion compensation during time-divided transmitting-receiving procedure and parallel implementation on multi-core CPU or Graphics processing units (GPU) processor, the convolution back-projection (CBP) imaging algorithm is proposed for DLSLA 3D SAR image reconstruction. At last, the focusing capabilities of our proposed imaging algorithm are investigated and verified by numerical simulations and theoretical analysis.
2012-06-25
PIER B
Vol. 42, 23-44
A Novel Wideband Circularly Polarized Antenna for Worldwide UHF Band RFID Reader Applications
Elias Mireles and Satish Kumar Sharma
This paper presents the novel design of a wideband circularly polarized (CP) Radio Frequency Identification (RFID) reader microstrip patch antenna for worldwide Ultra High Frequency (UHF) band which covers 840-960 MHz. The proposed antenna, which consists of a microstrip patch with truncated corners and a cross slot, is placed on a foam substrate (εr = 1.06) above a ground plane and is fed through vias through ground plane holes that extend from the quadrature 3 dB branch line hybrid coupler placed below the ground plane. This helps to separate feed network radiation, from the patch antenna and keeping the CP purity. The prototype antenna was fabricated with a total size of 225 x 250 x 12.8 mm3 which shows a measured impedance matching band of 840-1150 MHz (31.2%) as well as measured rotating linear based circularly polarized radiation patterns. The simulated and measured 3 dB Axial Ratio (AR) bandwidth is better than 23% from 840--1050 MHz meeting and exceeding the target worldwide RFID UHF band.
2012-06-25
PIER B
Vol. 42, 1-22
Theoretical Examination of Electromagnetic Wave Tunneling through Cascaded ϵ- and μ-Negative Metamaterial Slabs
Chien-Hao Liu and Nader Behdad
In this paper, we examine the close relationship that exists between the phenomenon of electromagnetic (EM) wave tunneling through stacks of single-negative metamaterial slabs and classical microwave filter theory. In particular, we examine the propagation of EM waves through a generalized multi-layer structure composed of N ϵ-negative layers separated from each other by N-1 μ-negative layers, where N≥2 is a positive integer. We demonstrate that, if certain conditions are met, this multi-layer structure can act as a capacitively-coupled, coupled-resonator filter with an Nth-order bandpass response. Exploiting this relationship, we develop a generalized, analytical synthesis method that can be used to determine the physical parameters of this structure from its a priori known frequency response. We present several design examples in conjunction with numerical EM simulation results to demonstrate the validity of this analogy and examine the accuracy of the proposed synthesis procedure.
2012-06-25
PIER B
Vol. 41, 419-439
High Frequency Electromagnetic Field Modeling and Experimental Validation of the Microwave Drying of Wheat Seeds
Vasile Darie Soproni , Simina Maria Vicas , Teodor Leuca , Mircea N. Arion , Francisc Ioan Hathazi and Carmen Otilia Molnar
The aim of this study is to determine the effects of the thermal treatment with microwaves on the germination of wheat seeds, type Apache × Renan for different processing parameters. With the experimental data we intend to find out the optimum balance between applied energy and material humidity so that the material can be dried without its structure being adversely affected. From the analyze of experiments regarding wheat seeds drying with the aim of obtaining a quality product we mention that the best results are referring to the situation of using the microwave power of 0.3 W/g combined with hot air stream and having the measured temperature in the seed bed below the value of 75°C.
2012-06-25
PIER Letters
Vol. 33, 63-72
A Broadband Microwave Gain Equalizer
Huan Wang , Bo Yan , Zhigang Wang and Rui-Min Xu
In this paper, we propose a new kind of broadband microwave gain equalizer in microstrip circuit. The equalizer uses open stepped impedance resonators (SIRs) to increase the adjust parameters so that the equation curve can be more flexible. Simplified topology of the gain equalizer is used to make the match net easier. The power distribute on each resistance is analyzed and the error analysis of the resistance values is done. Finally we design and manufacture a gain equalizer, and the measured results show that the equalization curve meets requirements well and proves that this structure is practical and effective.
2012-06-25
PIER M
Vol. 25, 71-85
Complex Reluctance of Inhomogeneous Euler-Cauchy Tubular Ferrites Taking into Account Frequency-Dependent Complex Permeability
Jose Antonio Marinho Brandao Faria
This paper presents a novel contribution to the analysis of skin-effect like phenomena in radially inhomogeneous tubular geometries that fit in the category of Euler-Cauchy structures (ECS). The advantage of ECSs is that solutions for the electromagnetic field can be described by very simple closed form formulae. This work addresses the evaluation of the per unit length complex magnetic reluctance of tubular ferrites, taking into account that their complex permeability strongly depends on the frequency. The motivation for this research is linked up with the nascent theory of magnetic transmission lines (MGTL), where the wave guiding structure is made of a pair of parallel ferrimagnetic pieces, and whose performance is critically dependent on the complex magnetic reluctance of its component pieces. The analysis presented is mainly focused on high frequency regimes up into the GHz range.
2012-06-24
PIER B
Vol. 41, 397-417
Gyrotropic-Nihility in Ferrite-Semiconductor Composite in Faraday Geometry
Vladimir Tuz , Oleg D. Batrakov and Yu Zheng
The reflection, transmission spectra and the polarization transformation of linearly polarized waves in the ferrite-semiconductor multilayer structure are considered. In the long-wavelength limit, the effective medium theory is applied to describe the studied structure as a uniaxial anisotropic homogeneous medium defined by the effective permittivity and effective permeability tensors. The investigations are carried out in the frequency band where the real parts of the diagonal elements of both the effective permittivity and permeability tensors are close to zero. In this frequency band the studied structure is referred to a gyrotropic-nihility medium. An enhancement of polarization rotation, impedance matching, backward propagation are revealed.
2012-06-24
PIER Letters
Vol. 33, 55-62
Compact Lowpass Filter with High Selectivity Using g-Shaped Defected Microstrip Structure
Hailin Cao , Wei Guan , Sijia He and Lisheng Yang
In this paper, a novel G-shaped defected microstrip structure (DMS) is presented. Compared with the conventional DMS, the proposed G-shaped DMS exhibits lower resonant frequency and wider stopband. A lowpass filter with 3 dB cutoff frequency at 3.17 GHz using four pairs of parallel cascaded G-shaped DMS units is designed and fabricated. The measured results show that the transition band is only 0.09 GHz and the stopband over 25 dB attenuation covers 3.4 GHz to 10 GHz.The measured and simulated results are in good agreement.
2012-06-24
PIER
Vol. 129, 271-285
A Fast 3D Imaging Technique for Near-Field Circular SAR Processing
Wei Yan , Jia-Dong Xu , Gao Wei , Li Fu and Hua-Bing He
A fast method for circular SAR three-dimensional imaging system by near-field elevation scanning is proposed in this paper. It is based on cylindrical spectrum theory which exploits the Fourier decomposition of the targets distribution instead of point by point imaging in earlier works. The proposed method sets up the relationship between the target image and the scattering field in spatial frequency domain. This leads to overcome the problem of computational inefficiency which was observed previously in projection-slice theorem. The near-field scattering is firstly analyzed by relating the return signal to the near-field focus function. The near-field focus function is then transformed to spatial frequency domain and evaluated by the method of stationary phase. Finally, the imaging result is given by three-dimensional inverse Fourier transformation from spatial frequency domain of targets. The proposed method is validated by the simulation results of distributed targets. In addition, experimental validation was also achieved in microwave chamber at X-band with targets placed on the turntable.
2012-06-23
PIER C
Vol. 30, 241-252
Dielectric Loading for Bandwidth Enhancement of Ultra-Wide Band Wire Monopole Antenna
Irena Zivkovic
This work presents the results of numerical simulations and parametric studies of dielectric loaded wire monopole antenna, of which the main advantage is bandwidth enhancement. Introducing dielectric loading makes it possible to tune antenna to operate over a frequency range not covered with unloaded antenna, while maintaining an omnidirectional radiation pattern. The simulations are performed when loading is done with lossy as well as lossless dielectric and the results are compared. The observational frequency range is extended up to 40 GHz. In addition, the simulated results are compared with the measured S11 of four fabricated antennas loaded with lossy dielectric and a good agreement is obtained.
2012-06-22
PIER B
Vol. 41, 377-396
Inductance and Force Calculation for Axisymmetric Coil Systems Including an Iron Core of Finite Length
Thierry Lubin , Kevin Berger and Abderrezak Rezzoug
This paper presents new semi-analytical expressions to calculate the selfinductance and the electromagnetic force for a ferromagnetic cylinder of finite length placed inside a circular coil of rectangular cross section. The proposed analytical model is based on boundary value problems with Fourier analysis. Laplace's and Poisson's equations are solved in each region by using the separation of variables method. The boundary and continuity conditions between the different regions yield to the global solution. Moreover, the iron cylinder is assumed to be infinitely permeable. Magnetic field distribution, self-inductance and electromagnetic force obtained with the proposed analytical model are compared with those obtained from finite-element.
2012-06-22
PIER Letters
Vol. 33, 47-54
Compact Dual-Mode Tri-Band Microstrip BPF with Three Sets of Resonators
Xiao-Jun Zhou , Yong-Jiu Zhao , Yong Fu and Yan-Yun Liu
In this letter, a novel compact dual-mode tri-band microstrip bandpass filter (BPF) is proposed using three sets of dual-mode resonators, i.e., the quarter-wavelength resonator (QWR) which is designed for the first passband, and two sets of stub loaded resonators (SLR) for the second and third passband, respectively. The center frequencies and bandwidths of three passbands can be flexibly tuned and designed. Multiple transmission zeros can be generated to improve the selectivity. Meanwhile, the BPF can obtain more compact size by adopting the folded resonators and extended feed lines. Finally, a tri-band microstrip BPF prototype with fractional bandwidths 18.3% at 1.8 GHz, 5.5% at 3.6 GHz and 12.2% at 5.25 GHz is designed. The measured results are in good agreement with the full-wave simulation results.
2012-06-22
PIER Letters
Vol. 33, 37-46
A Distributed Variable Delay Line for Wideband Beam-Formers
Saliba Dabbagh , Loay D. Khalaf and Mohammed Hawa
A fully integrated CMOS wideband distributed variable delay line for time array beam-formers is presented. The delay line works over a full differential mode, and the delay cell function is based on differential amplifiers with active inductive peaking loads. A delay resolution of 15 ps is obtained with a maximum delay capability of 150 ps . The designed active delay line provides 3 scanning angles with 8.6o degrees of spatial resolution. This delay line is applicable for a 4 channel beam-former with an operational bandwidth of 500 MHz centered at 5 GHz. Our active delay line consumes up to 352 mW of power from 2.5 V supply. The circuit is simulated in standard 0.25 μm BiCMOS process and occupies 252 μm × 123 μm of silicon area.
2012-06-22
PIER C
Vol. 30, 225-239
Novel Design of Symmetric Photonic Bandgap Based Image Encryption System
Nihal Fayez Fahmy Areed and Salah S. A. Obayya
A novel approach for the design of image encryption system based on one stage of 3D photonic bandgap structure is proposed. Using the Finite Integration Time Domain (FITD) method, the performance of the proposed design is optimized through the utilization of the reflection properties from 3D photonic bandgap structure while maintaining constant phase encoding. To demonstrate the robustness of the suggested encryption system, root mean square error is calculated between the original and decrypted images revealing the high accuracy in retrieving the images. In addition, as the proposed system renders itself as easy to fabricate, it has an excellent potential for being very useful in both microwaves and photonics imaging system applications.
2012-06-21
PIER Letters
Vol. 33, 27-35
Tunable Wavelength Demultiplexer for DWDM Application Using 1-d Photonic Crystal
Arun Kumar , Bhuvneshwer Suthar , Vipin Kumar , Khundrakpam Saratchandra Singh and Anami Bhargava
Transmission characteristics of 1-D photonic crystal (PC) structure with a defect have been studied. We consider a Si/ZnS multilayer system. We also consider the refractive index of both layers to be dependent on temperature and wavelength simultaneously. The refractive indices of Si and ZnS layers are functions of temperature as well in the wavelength of incident light. This property can be used while tuning defect modes at desired wavelength. As defect modes are function of temperature, one can tune the defect modes to desired wavelength. It is found that the average change in central wavelength of each defect mode is 0.07 nm/K. This property can be exploited in the design of a tunable wavelength demultiplexer for DWDM application in optical communication.
2012-06-21
PIER Letters
Vol. 33, 13-25
Quasi-Isotropic Approximation of Geometrical Optics Method with Applications to Dense Plasma Polarimetry
Yury A. Kravtsov and Bohdan Bieg
Basic equations of quasi-isotropic approximation (QIA) of geometrical optics method are presented, which describe electromagnetic waves propagation in weakly inhomogeneous and weakly anisotropic media. It is shown that in submillimiter range of electromagnetic spectrum plasma in all modern thermonuclear reactors, both acting and under construction, manifest properties of weakly inhomogeneous and weakly anisotropic medium, even for extreme electron density Ne ~ 1014 cm-3 and magnetic field B0 ~ 5 T accepted for project ITER. In these conditions QIA serves as natural theoretical basis for plasma polarimetry in tokamaks and stallarators. It is pointed out that Stokes vector formalism (SVF), widely used in polarimetry, can be derived from QIA in a generalized form, admitting the rays to be curvilinear and torsiened. Other important result of QIA is development of angular variables technique (AVT), which deals directly with angular parameters of polarization ellipse and operates with the system of two differential equations against three equations in form of SVF.