Vol. 42
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-06-25
Theoretical Examination of Electromagnetic Wave Tunneling through Cascaded ϵ- and μ-Negative Metamaterial Slabs
By
Progress In Electromagnetics Research B, Vol. 42, 1-22, 2012
Abstract
In this paper, we examine the close relationship that exists between the phenomenon of electromagnetic (EM) wave tunneling through stacks of single-negative metamaterial slabs and classical microwave filter theory. In particular, we examine the propagation of EM waves through a generalized multi-layer structure composed of N ϵ-negative layers separated from each other by N-1 μ-negative layers, where N≥2 is a positive integer. We demonstrate that, if certain conditions are met, this multi-layer structure can act as a capacitively-coupled, coupled-resonator filter with an Nth-order bandpass response. Exploiting this relationship, we develop a generalized, analytical synthesis method that can be used to determine the physical parameters of this structure from its a priori known frequency response. We present several design examples in conjunction with numerical EM simulation results to demonstrate the validity of this analogy and examine the accuracy of the proposed synthesis procedure.
Citation
Chien-Hao Liu, and Nader Behdad, "Theoretical Examination of Electromagnetic Wave Tunneling through Cascaded ϵ- and μ-Negative Metamaterial Slabs," Progress In Electromagnetics Research B, Vol. 42, 1-22, 2012.
doi:10.2528/PIERB12051016
References

1. Tai, G. C., Y. W. Kiang, and C. H. Chen, "Plasma-dielectric sandwich structure used as a tunable bamlpass microwave filter," IEEE Trans. on Microw. Theory and Techn., Vol. 32, 111-113, 1984.
doi:10.1109/TMTT.1984.1132621

2. Dragila, B., B. Luther-Davies, and S. Vukovic, "High transparency of classically opaque metallic films," Phys. Rev. Lett., Vol. 55, 1117-1120, 1985.
doi:10.1103/PhysRevLett.55.1117

3. Alu, A. and N. Engtheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. on Antennas and Propag., Vol. 51, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

4. Alu, A. and N. Engtheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers ," IEEE Trans. on Microw. Theory and Techn., Vol. 52, 199-210, 2004.
doi:10.1109/TMTT.2003.821274

5. Jiang, H., H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," IEEE Trans. on Phys. Rev. E, Vol. 69, 066607, 2004.
doi:10.1103/PhysRevE.69.066607

6. Kim, K. Y., "Photon tunneling in composite layers of negative-and positive-index media," Phys. Rev. E, Vol. 70, 047603, 2004.
doi:10.1103/PhysRevE.70.047603

7. Kim, K. Y., "Properties of photon tunneling through single-negative materials," Opt. Lett., Vol. 30, 430-432, 2005.
doi:10.1364/OL.30.000430

8. Alu, A. and N. Engtheta, "Evanescent growth and tunneling through stacks of frequency-selective surfaces," IEEE Antennas and Wireless Propag. Lett., Vol. 4, 417-420, 2005.
doi:10.1109/LAWP.2005.859381

9. Zhou, L., W. Wen, C. T. Chen, and P. Sheng, "Electromagnetic wave tunneling through negative-permittivity media with high magnetic fields," Phys. Rev. Lett., Vol. 94, 243905, 2005.
doi:10.1103/PhysRevLett.94.243905

10. Hooper, I. R., T. W. Preist, and J. R. Sambles, "Making tunnel barriers (including metals) transparent," Phys. Rev. Lett., Vol. 97, 053902, 2006.
doi:10.1103/PhysRevLett.97.053902

11. Alu, A., N. Engtheta, and R. W. Ziolkowski, "Transmission-line analysis of epsilon-near-zero (ENZ)-filled narrow channels," Phys. Rev. E, Vol. 74, 016604, 2006.
doi:10.1103/PhysRevE.74.016604

12. Guan, G., H. Jiang, H. Li, H. Zhang, H. Chen, and S. Zhu, "Tunneling modes of photonic heterostructures consisting of single-negative materials," Appl. Phys. Lett., Vol. 88, 211112, 2006.
doi:10.1063/1.2207218

13. Kim, K. Y. and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A, Vol. 77, 023822, 2008.
doi:10.1103/PhysRevA.77.023822

14. Feng, T., Y. Li, H. Jiang, Y. Sun, H. Li, Y. Zhang, Y. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media ," Phys. Rev. E, Vol. 79, 026601, 2009.
doi:10.1103/PhysRevE.79.026601

15. Ding, Y., Y. Li, H. Jiang, and H. Chen, "Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterial pair," PIERS Online, Vol. 6, 109-112, 2010.
doi:10.2529/PIERS091004104845

16. Butler, C. A. M., I. R. Hooper, A. P. Hibbins, J. R. Sambles, and P. A. Hobson, "Metamaterial tunnel barrier gives broadband microwave transmission," J. Appl. Phys., Vol. 109, 013104, 2011.
doi:10.1063/1.3525557

17. Al-Joumayly, M. and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements," IEEE Trans. on Antennas and Propag., Vol. 58, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474

18. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer," Phys. Rev. B, Vol. 83, 081105, 2011.
doi:10.1103/PhysRevB.83.081105

19. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Transformation-optics generalization of tunneling effects in bilayers made of paired epsilon-negative/mu-negative media," J. Opt., Vol. 13, 024011, 2011.
doi:10.1088/2040-8978/13/2/024011

20. Zverev, A. I., Hankbook of Filter Synthesis, Wiley-Interscience, New York, 1967.

21. Cameron, R. J., Microwave Magazine, Vol. 12, 42, 2011.