Temperature Dependence Analysis of the Chromatic Dispersion in Wii-Type Zero-Dispersion Shifted Fiber (Zdsf)
Ali Rostami
Somayeh Makouei
In this paper, we design the zero-dispersion wavelength shifted fiber based on the WII-type triple clad single mode optical fiber and consider the transmission parameters fluctuations owing to environmental conditions such as temperature variations on dispersion behavior of fiber. In order to estimate the thermal coefficients, the model introduced by Ghosh [1] is applied. Our calculation show that the thermal coefficient extracted for the chromatic dispersion, its slope, and the zero dispersion wavelength swing are -1.21×10-3 ps/km/nm/oC, +2.96×10-3 ps/km/nm2/oC, and +3.33× 10-2 nm/oC at 1.55 μm respectively. It is shown that in optical fiber design especially for dense wavelength division multiplexing (DWDM) systems, effect of temperature on channel displacement is critical and should be considered carefully.