1. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
2. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
3. Tarot, A. C., S. Collardey, and K. Mahdjoubi, "Numerical studies of metallic pbg structures," Progress In Electromagnetics Research, Vol. 41, 133-157, 2003.
doi:10.2528/PIER02010806 Google Scholar
4. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801 Google Scholar
5. Zheng, L. G. and W. X. Zhang, "Analysis of bi-anisotropic pbg structure using plane wave expansion method," Progress Electromagnetics In Research, Vol. 42, 233-246, 2003.
doi:10.2528/PIER03012101 Google Scholar
6. Zheng, L. G. and W. X. Zhang, "Study on bandwidth of 2-d dielectric PBG material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
doi:10.2528/PIER02010804 Google Scholar
7. Yuan, H. W., S.-X. Gong, X. Wang, and W.-T. Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302 Google Scholar
8. Daeyoung, O. and P. Ikmo, "Two-arm microstrip spiral antenna with a circular aperture on the ground plane for generating a circularly polarized conical beam," IEEE Antennas Propag. Soc. Int. Symp., Vol. 3, 866-869, 2003. Google Scholar
9. Velazquez-Ahumada, M. C., J. Martel, and F. Medina, "Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and enhanced coupling," IEEE Trans. Microwave Theory Tech., Vol. 52, 1082-1086, 2004.
doi:10.1109/TMTT.2004.823593 Google Scholar
10. Sharma, R., T. Chakravarty, S. Bhooshan, et al. "Characteristic impedance of a microstrip-like interconnect line in presence of ground plane aperture," International Journal of Microwave Science and Technology, Vol. 1, 1-5, 2007.
doi:10.1155/2007/41951 Google Scholar
11. Park, J.-I., C.-S. Kim, et al. "Modeling of a photonic bandgap and its application for the low-pass filter design," Asia Pacific Microwave Conf. Proc. APMC, Vol. 2, 331-334, 1999. Google Scholar
12. Lim, J.-S., C.-S. Kim, Y.-T. Lee, et al. "A spiral-shaped defected ground structure for coplanar waveguide," IEEE Microwave Compon. Lett., Vol. 12, No. 9, 330-332, 2002.
doi:10.1109/LMWC.2002.803208 Google Scholar
13. Boutejdar, A., G. Nadim, S. Amari, et al. "Control of bandstop response of cascaded microstrip low-pass-bandstop filters using arrowhead slots in backside metallic ground plane," IEEE Antennas Propag. Soc. Int. Symp., Vol. 1B, 574-577, 2005.
doi:10.1109/APS.2005.1551623 Google Scholar
14. Chen, H.-J., T.-H. Huang, C.-S. Chang, et al. "A novel cross-shape DGS applied to design ultra-wide stopband low-pass filters," IEEE Microwave Compon. Lett., Vol. 16, No. 5, 252-254, 2006.
doi:10.1109/LMWC.2006.873594 Google Scholar
15. Li, J. L., J. X. Chen, Q. Xue, et al. "Compact microstrip lowpass filter based on defected ground structure and compensated microstrip line," IEEE MTT-S Int. Microwave Symp. Digest, 1483-1486, 2005. Google Scholar
16. Chen, J. X., J. L. Li, K. C. Wan, et al. "Compact quasi-elliptic function filter based on defected ground structure," IEE Proc. Microwaves Antennas Propag., Vol. 153, No. 4, 320-324, 2006.
doi:10.1049/ip-map:20050235 Google Scholar
17. Liu, H., Z. Li, and X. Sun, "Compact defected ground structure in microstrip technology," Electron. Lett., Vol. 41, No. 3, 132-134, 2005.
doi:10.1049/el:20057331 Google Scholar
18. Ting, S.-W., K.-W. Tam, and R. P. Martins, "Compact microstrip quasi-elliptic bandpass filter using open-loop dumbbell shaped defected ground structure," IEEE MTT-S Int. Microwave Symp, Digest, 527-530, 2006.
doi:10.1109/MWSYM.2006.249627 Google Scholar
19. Mandal, M. K and S. Sanyal, "A novel defected ground structure for planar circuits," IEEE Microwave Compon. Lett., Vol. 16, No. 2, 93-95, 2006.
doi:10.1109/LMWC.2005.863192 Google Scholar
20. Woo, D.-J., T.-K. Lee, J.-W. Lee, et al. "Novel u-slot and v-slot dgss for bandstop filter with improved Q factor," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2840-2846, 2006.
doi:10.1109/TMTT.2006.875450 Google Scholar
21. Lim, J.-S., Y.-T. Lee, C.-S. Kim, et al. "A vertically periodic defected ground structure and its application in reducing the size of microwave circuits," IEEE Microwave Compon. Lett., Vol. 12, No. 12, 479-481, 2002.
doi:10.1109/LMWC.2002.805941 Google Scholar
22. Lim, J.-S., Y.-T. Lee, C.-S. Kim, et al. "A vertically periodic defected ground structure and its application in reducing the size of microwave circuits," IEEE Microwave Compon. Lett., Vol. 12, No. 12, 479-481, 2002.
doi:10.1109/LMWC.2002.805941 Google Scholar
23. Oskouei, H. D., K. Forooraghi, and M. Hakkak, "Guided and leaky wave characteristics of periodic defected ground structures," Progress In Electromagnetics Research, Vol. 73, 15-27, 2007.
doi:10.2528/PIER07031701 Google Scholar
24. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-d microstrip PBG cells," IEEE Microwave Guided Wave Lett., Vol. 10, No. 10, 403-405, 2000.
doi:10.1109/75.877226 Google Scholar
25. Liu, H.-W., Z.-F. Li, X.-W. Sun, et al. "An improved 1d periodic defected ground structure for microstrip line," IEEE Microwave Compon. Lett., Vol. 14, No. 4, 180-182, 2004.
doi:10.1109/LMWC.2004.827097 Google Scholar
26. Mollah, M. N. and N. C. Karmakar, "A novel hybrid defected ground structure as low pass filter," IEEE Antennas Propag. Soc. Int. Symp., Vol. 4, 3581-3584, 2004. Google Scholar
27. Insik, C. and L. Bomson, "Design of defected ground structures for harmonic control of active microstrip antenna," IEEE Antennas Propag. Soc. Int. Symp., Vol. 2, 852-855, 2002. Google Scholar
28. Park, J.-S., J.-H. Kim, J.-H. Lee, et al. "A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter," IEEE MTT-S Int. Microwave Symp. Digest, Vol. 1, 417-420, 2002. Google Scholar
29. Karmakar, N. C., "Hi-Z, low-Z defected ground structure," Microwave Opt. Tech. Lett., Vol. 48, No. 10, 1909-1912, 2006.
doi:10.1002/mop.21811 Google Scholar
30. Wu, B., B. Li, T. Su, et al. "Equivalent-circuit analysis and lowpass filter design of split-ring resonator DGS," Journal of Electromagnetic Waves and Applications, Vol. 20, 1943-1953, 2006.
doi:10.1163/156939306779322765 Google Scholar
31. Balalem, A., A. R. Ali, J. Machac, et al. "Quasi-elliptic microstrip low-pass filters using an interdigital DGS slot," IEEE Microwave Compon. Lett., Vol. 17, No. 8, 586-588, 2007.
doi:10.1109/LMWC.2007.901769 Google Scholar
32. Xiao, J. K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, 1817-1826, 2006.
doi:10.1163/156939306779292156 Google Scholar
33. Chen, J., Z.-B. Weng, Y.-C. Jiao, et al. "Lowpass filter design of hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603 Google Scholar
34. Xiao, J. K., S. W. Ma, and S. L. Zhang, "Novel compact split ring stepped-impedance resonator (SIR) bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 21, 329-339, 2007.
doi:10.2528/PIER07082501 Google Scholar
35. Parui, S. K. and S. Das, "Performance enhancement of microstrip open loop resonator band pass filter by defected ground structures," Conf. Proc. IEEE Int. Workshop Antenna Technol. Small Smart Antennas Metamater. Applic., 483-486, 2007.
doi:10.1109/IWAT.2007.370179 Google Scholar
36. Yang, G. M., R. Jin, et al. "Ultra-wideband bandpass filter with hybrid quasi-lumped elements and defected ground structure," IET Microwaves Antennas Propag., Vol. 1, No. 3, 733-736, 2007.
doi:10.1049/iet-map:20060288 Google Scholar
37. Wang, C.-J., S.-Y. Chen, and Y.-C. Lin, "Improvements of microstrip loop filters," IEEE Int. Workshop Anti-counterfeiting Secur. Identif., 40-43, 2007.
doi:10.1109/IWASID.2007.373691 Google Scholar
38. Wu, G.-L., W. M., X.-W. Dai, et al. "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and csrr DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301 Google Scholar
39. Naghshvarian-Jahromi, M. and M. Tayarani, "Miniature planar uwb bandpass filters with circular slots in ground," Progress In Electromagnetics Research Letters, Vol. 3, 87-93, 2008.
doi:10.2528/PIERL08020902 Google Scholar
40. Zhenhai, S. and M. Fujise, "Bandpass filter design based on LTCC and DGS," Asia Pacific Microwave Conf. Proc. APMC, Vol. 1, 2-3, 2005. Google Scholar
41. Zhang, Y. L., W. Hong, K. Wu, et al. "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1280-1287, 2005.
doi:10.1109/TMTT.2005.845750 Google Scholar
42. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 db microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502 Google Scholar
43. Choi, H.-J., J.-S. Lim, Y.-C. Jeong, et al. "Doherty amplifier using load modulation and phase compensation DGS microstrip line," 36th European Microwave Conf., 352-355, 2006. Google Scholar
44. Hosseini, S. A., Z. Atlasbaf, and K. Forooraghi, "Two new loaded compact palnar ultra-wideband antennas using defected ground structures," Progress In Electromagnetics Research B, Vol. 2, 165-176, 2008.
doi:10.2528/PIERB07111802 Google Scholar
45. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, et al. "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203 Google Scholar
46. Lim, J.-S., G.-Y. Lee, Y.-C. Jeong, et al. "A 1:6 unequal wilkinson power divider," 36th Microwave Conf., 200-203, 2006. Google Scholar