1. Unser, M., A. Aldroubi, and M. Eden, "B-spline signal processing: Part I --- Theory," IEEE Trans. Signal Processing, Vol. 41, No. 2, 821-833, Feb. 1993.
doi:10.1109/78.193220 Google Scholar
2. Unser, M., A. Aldroubi, and M. Eden, "B-spline signal processing: Part II --- Efficient design and applications," IEEE Trans. Signal Processing, Vol. 41, No. 2, 834-848, Feb. 1993.
doi:10.1109/78.193221 Google Scholar
3. Unser, M., "Splines a perfect fit for signal and image processing," IEEE Signal Processing Magazine, November 1999. Google Scholar
4. Hou, H. S. and H. C. Andrews, "Cubic spline for image interpolation and digital filtering," IEEE Trans. Accoustics, Speech and Signal Processing, Vol. 26, No. 9, 508-517, December 1978. Google Scholar
5. Thevenaz, P., T. Blu, and M. Unser, "Interpolation revisited," IEEE Trans. Medical Imaging, Vol. 19, No. 7, 739-758, July 2000.
doi:10.1109/42.875199 Google Scholar
6. Blu, T., P. Thevenaz, and M. Unser, "MOMS: Maximal-order interpolation of minimal support," IEEE Trans. Image Processing, Vol. 10, No. 7, 1069-1080, 2001.
doi:10.1109/83.931101 Google Scholar
7. Vrcelj, B. and P. P. Vaidyanathan, "Efficient implementation of all digital interpolation," IEEE Trans. Image Processing, Vol. 10, No. 11, 1639-1646, November 2001.
doi:10.1109/83.967392 Google Scholar
8. Han, J. K. and H.-M. Kim, "Modified cubic convolution scaler with minimum loss of information," Optical Engineering, Vol. 40, No. 4, 540-546, April 2001.
doi:10.1117/1.1355250 Google Scholar
9. Ramponi, G., "Warped distance for space variant linear image interpolation," IEEE Trans. Image Processing, Vol. 8, 629-639, 1999.
doi:10.1109/83.760311 Google Scholar
10. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "A simple adaptive interpolation approach based on varying image local activity levels," International Journal of Information Acquisition, Vol. 3, No. 1, March 2006.
doi:10.1142/S0219878906000769 Google Scholar
11. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "An adaptive cubic convolution image interpolation approach," International Journal of Machine Graphics & Vision, Vol. 14, No. 3, 235-256, 2005. Google Scholar
12. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "A newapproach for adaptive polynomial based image interpolation," International Journal of Information Acquisition, Vol. 3, No. 2, 139-159, 2006.
doi:10.1142/S0219878906000885 Google Scholar
13. Leung, W. Y. V. and P. J. Bones, "Statistical interpolation of sampled images," Opt. Eng., Vol. 40, No. 4, 547-553, April 2001.
doi:10.1117/1.1353799 Google Scholar
14. Shin, J. H., J. H. Jung, and J. K. Paik, "Regularized iterative image interpolation and its application to spatially scalable coding," IEEE Trans. Consumer Electronics, Vol. 44, No. 3, 1042-1047, August 1998.
doi:10.1109/30.713232 Google Scholar
15. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "Optimization of image interpolation as an inverse problem using the LMMSE algorithm," Proceedings of the IEEE MELECON, 247-250, May 2004. Google Scholar
16. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "A newapproac h for regularized image interpolation," Journal of The Brazilian Computer Society, Vol. 11, No. 3, April 2006. Google Scholar
17. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Sallam, and F. E. A. El-Samie, "Efficient implementation of image interpolation as an inverse problem," Journal of Digital Signal Processing, Vol. 15, No. 2, 137-152, March 2005.
doi:10.1016/j.dsp.2004.10.003 Google Scholar
18. Kim, S. P. and W. Y. Su, "Recursive high resolution reconstruction of blurred multiframe images," IEEE Trans. Image Processing, Vol. 2, No. 4, 534-539, October 1993.
doi:10.1109/83.242363 Google Scholar
19. Kim, S. P., N. K. Bose, and H. M. Valenzuela, "Recursive reconstruction of high resolution image from noisy undersampled multiframes," IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 38, No. 6, 1013-1027, June 1990.
doi:10.1109/29.56062 Google Scholar
20. Park, S. C., M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: A technical overview," IEEE Signal Processing Magazine, Vol. 20, No. 3, 21-36, May 2003.
doi:10.1109/MSP.2003.1203207 Google Scholar
21. Eren, P. E., M. I. Sezan, and M. Tekalp, "Robust, object based high resolution image reconstruction from lowresolution vedio," IEEE Trans. Image Processing, Vol. 6, No. 10, 1446-1451, October 1997.
doi:10.1109/83.624970 Google Scholar
22. Elad, M. and A. Feuer, "Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images," IEEE Trans. Image Processing, Vol. 6, No. 12, 1646-1658, December 1997.
doi:10.1109/83.650118 Google Scholar
23. Capel, D. and A. Zisserman, "Computer vision applied to superresolution," IEEE Signal Processing Magazine, Vol. 20, No. 3, 75-86, May 2003.
doi:10.1109/MSP.2003.1203211 Google Scholar
24. Nguyen, N., P. Milanfar, and G. Golub, "A computationally efficient superresolution image reconstruction algorithm," IEEE Trans. Image Processing, Vol. 10, No. 4, 573-583, April 2001.
doi:10.1109/83.913592 Google Scholar
25. Rajan, D., S. Chandhuri, and M. V. Joshi, "Multi-objective superresolution: Concepts and examples," IEEE Signal Processing Magazine, Vol. 20, No. 3, 49-61, May 2003.
doi:10.1109/MSP.2003.1203209 Google Scholar
26. Segall, C. A., R. Molina, and A. K. Katsaggelos, "High-resolution images from low-resolution compressed video," IEEE Signal Processing Magazine, Vol. 20, No. 3, 37-48, May 2003.
doi:10.1109/MSP.2003.1203208 Google Scholar
27. Elad, M. and A. Feuer, "Super-resolution restoration of an image sequence: Adaptive filtering approach," IEEE Trans. Image Processing, Vol. 8, No. 3, 387-395, March 1999.
doi:10.1109/83.748893 Google Scholar
28. Ng, M. K. and N. K. Bose, "Mathematical analysis of superresolution methodology," IEEE Signal Processing Magazine, Vol. 20, No. 3, 62-74, May 2003.
doi:10.1109/MSP.2003.1203210 Google Scholar
29. Vega, M., J. Mateos, R. Molina, and A. K. Katsagegelos, "Bayesian parameter estimation in image reconstruction from subsampled blurred observations," Proc. of ICIP 2003, 2003. Google Scholar
30. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "Wavelet fusion: A tool to break the limits on LMMSE image super-resolution," International Journal of Wavelets, Multiresolution and Information Processing IJWMIP, Vol. 4, No. 1, March 2006. Google Scholar
31. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "A wavelet based entroptic approach to high-resolution image reconstruction," International Journal of Machine Graphics and Vision. Google Scholar
32. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "Regularized super-resolution reconstruction of images using wavelet fusion," Journal of Optical Engineering, Vol. 44, No. 9, September 2005. Google Scholar
33. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. A. El-Samie, "Blind reconstruction of high resolution images using wavelet fusion," Journal of Applied Optics, Vol. 44, No. 34, December 2005. Google Scholar
34. El-Khamy, S. E., M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, "A GCD approach to blind superresolution reconstruction of images," Journal of Modern Optics, Vol. 53, No. 8, May 2006.
doi:10.1080/09500340500445065 Google Scholar