1. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.
doi:10.1163/156939306775701704 Google Scholar
2. Frezza, F., P. Martinelli, L. Pajewski, and G. Schettini, "Short-pulse electromagnetic scattering from buried perfectly-conducting cylinders," IEEE Letters on Geoscience and Remote Sensing, Vol. 4, No. 4, 611-615, Oct. 2007.
doi:10.1109/LGRS.2007.903078 Google Scholar
3. Chen, H. T. and G.-Q. Zhu, "Model the electromagnetic scattering from three-dimensional PEC object buried under rough ground by MOM and modified PO hybrid method," Progress In Electromagnetics Research, Vol. 77, 15-27, 2007.
doi:10.2528/PIER07072202 Google Scholar
4. Li, Z.-X., "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method," Progress In Electromagnetics Research, Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501 Google Scholar
5. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
doi:10.2528/PIER07081601 Google Scholar
6. Di Vico, M., F. Frezza, L. Pajewski, and G. Schettini, "Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: A spectral-domain solution," IEEE Trans. Antennas Propagat., Vol. 53, 719-727, Feb. 2005.
doi:10.1109/TAP.2004.841315 Google Scholar
7. Daniels, D. J., Surface-Penetrating Radar, 2nd Ed., IEE Radar Series, 2004.
8. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: a comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224 Google Scholar
9. Moustafa, K. and K. A. Hussein, "Performance evaluation of separated aperture sensor GPR system for land mine detection," Progress In Electromagnetics Research, Vol. 72, 21-37, 2007.
doi:10.2528/PIER07022607 Google Scholar
10. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902 Google Scholar
11. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GPR data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1577-1586, 2006.
doi:10.1163/156939306779292318 Google Scholar
12. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER07100201 Google Scholar
13. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave X-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.1364/JOSAA.13.000483 Google Scholar
14. Borghi, R., F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, "Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: Cylindrical-wave approach," J. Opt. Soc. Am. A, Vol. 13, 483-493, Mar. 1996.
doi:10.2528/PIER02042604 Google Scholar
15. Ciambra, F., F. Frezza, L. Pajewski, and G. Schettini, "A spectral-domain solution for the scattering problem of a circular cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 38, 223-252, 2002.
doi:10.1163/156939399X01591 Google Scholar
16. Borghi, R., F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, "Numerical study of the reflection of cylindrical waves of arbitrary order by a generic planar interface," Journal of Electromagnetic Waves and Applications, Vol. 13, 27-50, Jan. 1999.
doi:10.1163/156939300X00121 Google Scholar
17. Borghi, R., F. Frezza, M. Santarsiero, C. Santini, and G. Schettini, "A quadrature algorithm for the evaluation of a 2D radiation integral with highly oscillating kernel," Journal of Electromagnetic Waves and Applications, Vol. 14, 1353-1370, Oct. 2000.
doi:10.1029/2004RS003182 Google Scholar
18. Di Vico, M., F. Frezza, L. Pajewski, and G. Schettini, "Scattering by buried dielectric cylindrical structures," Radio Science, Vol. 40, No. 6, Aug. 2005.
doi:10.1029/2004RS003182 Google Scholar
19. Bertoni, H. L., L. Carin, and L. B. Felsen (eds.), Ultra-Wideband, Short-Pulse Electromagnetics, Plenum, 1994.
20. Carin, L. and L. B. Felsen (eds.), Ultra-Wideband, Short-Pulse Electromagnetics II, Plenum, 1995.
21. Losada, V., R. R. Boix, and F. Medina, "Short-pulse electromagnetic scattering from conducting circular plates," IEEE Trans.Ge osci.R emote Sensing, Vol. 41, 987-997, May 2003. Google Scholar
22. Brigham, E. O., The Fast Fourier Transform and Its Applications, Prentice-Hall, 1988.
23. Gurel, L. and U. Oguz, "Three-dimensional FDTD modeling of a ground-penetrating radar," IEEE Trans.Ge osci.R emote Sensing, Vol. 38, No. 4, 1513-1521, 2000.
doi:10.1109/36.851951 Google Scholar
24. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1994.