Search Results(13744)

2016-08-25
PIER M
Vol. 49, 167-179
Modeling the Effect of Periodic Wall Roughness on the Indoor Radio Propagation Channel
Vincent Adelphe Fono and Larbi Talbi
A deterministic model based on ray tracing and dealing with periodic roughness is developed, for an indoor radio propagation channel and experimentally validated at a frequency of 10 GHz. Two different scenarios are studied, namely a smooth corridor and a corridor having artificial periodic roughness. The periodic roughness consists of a set of conductive semi-cylinders attached to the corridor sidewalls. Two different antenna setups are considered during the measurements, horn-horn antennas and patch-patch antennas, in transmitter-receiver configurations. Excellent agreement is achieved in terms of the received powers versus distance and the power delay profiles. The signal fading is analyzed. The statistical parameters are also generated, and a fair agreement is observed between the simulation and measurement results.
2016-08-23
PIER M
Vol. 49, 153-165
Statistical Design Centering Optimization of 1D Photonic Crystal Filters
Abdel-Karim S. O. Hassan , Ahmed Sayed Mohamed , Mahmoud M. Taha and Nadia H. Rafat
A statistical design centering approach is introduced, to achieve the optimal design center point of one-dimensional photonic crystal-based filters which are parts of several optoelectronic systems. Up to our knowledge, it is the first time that a design centering approach is applied to such a design problem. The proposed approach seeks nominal designable parameter values that maximize the probability of satisfying the design specifications (yield function). Thus, the achieved optimal design center point is much more robust to unavoidable designable parameter variations, occurring during fabrication process, for example. The yield maximization problem is formulated as an unconstrained optimization problem solved by derivative-free based-algorithm (NEWUOA) coupled with a variance reduction yield estimator to reduce large number of required system simulations. The flexibility and efficiency of the proposed design centering approach are demonstrated by two practical examples: band pass optical filter and spectral control filter. A comparison with Minimax optimization technique is also given.
2016-08-23
PIER
Vol. 156, 105-133
Pathological Brain Detection by Artificial Intelligence in Magnetic Resonance Imaging Scanning (Invited Review)
Shuihua Wang , Yin Zhang , Tianmin Zhan , Preetha Phillips , Yudong Zhang , Ge Liu , Siyuan Lu and Xueyan Wu
(Aim) Pathological brain detection (PBD) systems aim to assist and even replace neuroradiologists to make decisions for patients. This review offers a comprehensive and quantitative comparison for PBD systems by artificial intelligence in magnetic resonance imaging (MRI) scanning. (Method) We first investigated four categories of brain diseases, including neoplastic disease, neurodegenerative disease, cerebrovascular disease, and inflammation. Next, we introduced important MRI techniques, such as the shimming, water and fat suppression, and three advanced imaging modalities (functional MRI, diffusion tensor imaging, and magnetic resonance spectroscopic imaging). Then, we discussed four image preprocessing techniques (image denoising, slice selection, brain extraction, spatial normalization, and intensity normalization), seven feature representation techniques (shape, moment, wavelet, statistics, entropy, gray level co-occurrence matrix, and Fourier transform), and two dimension reduction techniques (feature selection and feature extraction). Afterwards, we studied classification related methods: six learning models (decision tree, extreme learning machine, k-nearest neighbors, naive Bayes classifier, support vector machine, feed-forward neural network), five kernel functions (linear, homogeneous and inhomogeneous polynomial, radial basis function, and sigmoid), and three types of optimization methods (evolutionary algorithm, stochastic optimization, and swarm intelligence). (Results) We introduced three benchmark datasets and used Kfold stratified cross validation to avoid overfitting. We presented a detailed quantitative comparison among 44 state-of-the-art PBD algorithms and discussed their advantages and limitations. (Discussions) Artificial intelligence is now making stride in the PBD field and enjoys a fair amount of success. In the future, semi-supervised learning and transfer learning techniques may be potential breakthroughs to develop PBD systems.
2016-08-21
PIER M
Vol. 49, 141-151
An Extension of the Linear Embedding via Green's Operators Method for the Analysis of Disconnected Finite Antenna Arrays
Salman Mokhlespour , Vito Lancellotti and Antonius G. Tijhuis
We describe an extension of the linear embedding via Green's operators (LEGO) method to the solution of finite antenna arrays comprised of disconnected elements in a homogeneous medium. The ultimate goal is the calculation of the admittance matrix and the radiation pattern of the array. As the basic idea is the inclusion of an array element inside a LEGO electromagnetic brick, the first step towards the solution consists of the definition and numerical calculation of hybrid scattering-admittance operators which extend the notion of scattering operators of equivalent currents introduced in the past. Then again, the combination of many bricks involves the usual transfer operators for the description of the multiple scattering between the bricks. Moreover, to reduce the size of the problem we implement the eigencurrents expansion. With the aid of a numerical example we discuss the validation of the approach and the behaviour of the total CPU time as a function of the elements forming the array.
2016-08-19
PIER Letters
Vol. 62, 1-8
A Novel Wideband Circularly Polarized Patch Array with Meta-Surface
Ruiqi Wang , Yongchang Jiao , Liang Lu and Huan Zhang
A wideband sequential-phase-feeding circularly polarized (CP) patch array is proposed in this paper. A well-designed meta-surface is placed above the array to enhance its impedance and axial ratio (AR) bandwidths. The proposed patch array has an overall size of 1.275λo×1.275λo×0.0935λo at 5.1 GHz. Measured results show that the impedance bandwidth (|S11|<-10 dB) of the array is 24.26% from 4.74 GHz to 6.05 GHz, and its 3 dB axial ratio bandwidth is 19% from 4.75 GHz to 5.75 GHz. The measured gain of the array at 5.7 GHz is 10.8 dBic. The measured results agree well with the simulated ones.
2016-08-19
PIER Letters
Vol. 61, 131-137
A Wideband Dual-Polarized Modified Bowtie Antenna for 2G/3G/LTE Base-Station Applications
Zhao Yang , Cilei Zhang , Ying-Zeng Yin and Yong Wang
A novel wideband dual-polarized antenna is presented for 2G/3G/LTE base-station applications. The proposed antenna consists of two orthogonal modified bowtie dipoles, parasitic elements and a cavity. By using parasitic elements and compact cavity, the antenna achieves a wide impedance bandwidth about 77.3% (VSWR<1.5) for both ports. Both simulated and measured results show that the proposed antenna has a port isolation higher than 31 dB and high gain (>8.5 dBi) over the entire operating band. Moreover, good cross-polarization (>25 dB) performance and a front-to-back ratio better than 20 dB are also verified by measured results.
2016-08-17
PIER C
Vol. 66, 191-199
Power-Combined Multipliers at 60 GHz Based on Fundamental Frequency Vector Modulation
Pengfei Sun , Liang Wu , Jinyi Ding and Xiao-Wei Sun
High output power multiplier is necessary for local oscillator (LO) source of millimeter-wave and terahertz applications. However, single multiplier chip power-handling capability is limited by understandably low efficiency level and other technical constraints. Conventional in-phase power-combined structures are sensitive to the fabrication and assembly errors. In order to circumvent these limits, we propose a power-combined multiplier architecture at 60 GHz based on fundamental frequency vector modulation at 30 GHz. The fundamental vector modulator adjustment can compensate the phase deviation at the two doubler output ports despite fabrication and assembly tolerances. We can increase the output power by approximately 3 dB compared with single multiplier without sacrificing the bandwidth.
2016-08-12
PIER M
Vol. 49, 131-140
A Comparative Study of Flux Cancellation Among Multiple Interconnected Modular Pads in Lumped IPT System
Chun Qiu , Kwok-Tong Chau , Zhen Zhang and Tze Wood Ching
A lumped inductive power transfer system (IPT) with multiple modular pads differs from a stand-alone system. The magnetic coupling between adjacent modules is affected by the flux cancelation which further affects the power transmission. Thus, it is important to investigate the relationship between flux cancelation and system configuration. In this paper, the basic connection and operating mechanism for a modular IPT system are first discussed. Six cases are designed for two scenarios, including single and multiple secondary modules. Performances are compared in various primary excitation modes and secondary connection modes. Results show that the direction of canceled flux is determined by these modes. Matched modes will bring either a higher or a more stable coupling. And unmatched modes between primary and secondary sides tend to have the lowest coupling performance due to severe flux cancelation. Results provide a guidance for system design aiming at different power transfer characteristics.
2016-08-10
PIER C
Vol. 66, 183-190
A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems
Santasri Koley , Lakhindar Murmu and Biswajit Pal
A novel tri-band pattern reconfigurable planar antenna is proposed. Tri-band is achieved by inserting a bandstop filter at the feed line of a wideband monopole antenna with complementary split ring resonator (CSRR) on a circular patch. Two parasitic arc-shaped stubs are in the back side of the radiator that works as a reflector. The antenna radiation pattern is switched from omnidirectional to one of two different directional modes by activating one of the stubs. Three different radiation modes are controlled by four ideal switches. Radiation pattern reconfigurability makes it suitable for the use of flexible cognitive radio front-end system. The proposed antenna is suitable for WLAN 2.4/5.2/5.8 GHz and WiMAX 3.5/5.5 GHz applications. Good agreement between simulated and measured results validates its possible application.
2016-08-10
PIER M
Vol. 49, 117-129
Curved Space-Time for Light by an Anisotropic Medium: Media with the Variable Optical Axes
Sayed Alireza Mousavi , Rasoul Roknizadeh , Sahar Sahebdivan and Shahram Dehdashti
An optical impedance-matched medium with a gradient refractive index can resemble a geometrical analogy with an arbitrary curved space-time. In this paper, we show that a non-impedance-matched medium with a varying optical axis can also resemble the features of a space of non-trivial metric for light. The medium with a varying optical axis is an engineered stratified slab of material, in which the orientation of the optical axis in each layer slightly differs from the other layers, while the magnitude of refractive index remains constant. Instead of the change in refractive index, the inhomogeneity of such a medium is induced by the local anisotropy. Therefore, the propagation of light depends on the local optical axis. We study the conditions that make the analogy between curved space-time and a medium with a varying optical axis. Extension of the transformation optics to the media with optical axis profile might ease some fabrication difficulties of gradient refractive index materials for particular frequencies.
2016-08-08
PIER C
Vol. 66, 173-182
A CPW-Fed Microstrip Fork-Shaped Antenna with Dual-Band Circular Polarization
Chien-Jen Wang and Yu-Wei Cheng
This paper presents a microstrip wideband antenna and its utilization in integration of multiple wireless communication systems. A simple fork-like strip antenna, fed by a coplanar-waveguide (CPW) transmission line, is designed to excite a right-hand circularly polarized wave at 1.57 GHz. A rectangular patch is added at the end of one prong to enhance the circular polarization performance. By modifying the geometry of the ground plane, a left-hand circularly polarized wave is excited at 2.33 GHz, and the wideband frequency response is derived. To reduce the lower resonant frequency, a stub is added at the left side of the ground plane. The measured impedance bandwidth of reflection coefficients (S11) < -10 dB ranges from 1.49 to 2.92 GHz, which satisfies the system bandwidths of most of commercial wireless communication systems. The 3-dB axial-ratio bandwidths are approximately 40 MHz at the lower band (1.57 GHz) and 290 MHz at the upper band (2.33 GHz).
2016-08-08
PIER M
Vol. 49, 103-115
Propagation Properties of Partially Coherent Lorentz-Gauss Beams in Uniaxial Crystals Orthogonal to the X-Axis
Guoquan Zhou , Zhiyue Ji and Guoyun Ru
Analytical expressions of the elements of a cross spectral density matrix are derived to describe the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis. The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis are also presented. The evolution properties of the partially coherent Lorentz-Gauss beam are numerically demonstrated. The influences of the uniaxial crystal and coherence length on the propagation properties of the partially coherent Lorentz-Gauss beam in uniaxial crystals orthogonal to the x-axis are examined. The uniaxial crystal considered here has the property of the extraordinary refractive index being larger than the ordinary refractive index. The partially coherent Lorentz-Gauss beam in the direction along the x-axis spreads more rapidly than that in the direction along the y-axis. With increasing the ratio of the extraordinary refractive index to the ordinary refractive index, the spreading of the partially coherent Lorentz-Gauss beam increases in the direction along the x-axis, but decreases in the direction along the y-axis. Meanwhile, the degree of polarization in the edges of the long and short axes of the beam spot increases. With increasing the coherence length, the beam spot of the partially coherent Lorentz-Gauss beam uniformly becomes less, and the maximum degree of polarization in the edge of the beam spot decreases.
2016-08-03
PIER Letters
Vol. 61, 125-130
A Planar End-Fire Antenna with Wide Beamwidth for 60 GHz Applications
Rongda Wang , Peng Gao , Peng Wang and Kai Kang
A novel 60 GHz end-fire antenna for point-to-multipoint applications is presented. The prototype of this antenna is a dipole structure with a wide beamwidth. Then, the radiators are tilted with the ground is also modified to improve its directive gain while maintaining wide signal coverage. The antenna has a compact size of 10 mm × 7 mm × 0.254 mm. Measured results show that the antenna has favorable properties of 3-dB beamwidth up to 150° at 60 GHz, S11 less than -10 dB and stable gain of 5.9 to 6.8 dBi over 57 to 64 GHz, where these characteristics denote it fitting for 60 GHz wireless communication systems.
2016-08-03
PIER M
Vol. 49, 91-101
Modified GO Solutions for the High Frequency Reflected Wave in the Focal Region of a 3D Elliptical Reflector Placed in Isotropic Chiral Medium
Tariq Rahim , Muhammad Ibrahim , Murad Ali Shah and Jia-Dong Xu
High frequency electromagnetic (EM) fields in the focal region of a 3D elliptical reflector placed in a homogeneous and reciprocal chiral background have been analyzed using geometrical optics (GO) approximation and Maslov's method. The GO solutions becomes invalid at the focal region of a 3D elliptical reflector due to unreal singularities. Therefore, an asymptotic method based on Maslov's theory has been applied to derive high frequency EM fields, which is also valid at the focal points. Moreover, the effect of chirality parameter of the background medium on the position of focal points for both Left circularly polarized wave (LCP) and right circularly polarized (RCP) wave are described by plotting the derived expressions numerically using MATLAB.
2016-08-02
PIER C
Vol. 66, 163-171
Wideband Balanced Antipodal Vivaldi Antenna with Enhanced Radiation Parameters
Li Li , Xinlin Xia , Yu Liu and Tao Yang
A novel balanced antipodal Vivaldi antenna (BAVA) with high gain and good directivity is proposed in this paper. The outer edges of the flare are modified by a binomial curve to broaden the impedance bandwidth. A metal director is adopted to improve the antenna gain and directivity. The measured results show that the proposed BAVA achieves a bandwidth from 2 to more than 40 GHz with peak gain >0 dBi and >10 dBi over the 8-40 GHz range. The squinting beam of E-plane is less than 5° from 4 to 40 GHz and less than 3° from 22 to 40 GHz.
2016-08-02
PIER M
Vol. 49, 81-89
RF and Microwave Low Power Dielectric Heating Using Parallel Plate Applicator to Control Insect Pests on Tomato Plant
Sandeep Vinayak Gaikwad and Arun N. Gaikwad
This paper focuses on electromagnetic exposure to control insect pests in agriculture using parallel plate applicator. A tomato plant and ``Helicoverpa armigera'' eggs and larvae are exposed to 915 MHz and 2450 MHz. A parallel plate applicator is fabricated and matched with Radio Frequency and Microwave source at 50 Ω. The power up to 250 W was applied to parallel plate applicator in an anechoic chamber to observe the behavior and heating effect on commodities inside the applicator. The rise in temperature of the tomato plant and tomato with insect pest stages were different for different dielectric properties. The reduction in the hatching was observed after the exposure. The first instar to fifth instar larvae erratic movement was observed during exposure. The faster response of heating was observed at the higher side of exposed power. The effect on the heating rate considering the variations in the space between two parallel plates of the applicator is analyzed in this research. The parallel plate capacitor is referred to as an applicator in this paper.
2016-07-31
PIER C
Vol. 66, 149-161
Design of Sub-Harmonic Mixer MMIC for EHF Satellite Links
Diego Palombini , Tommaso Cavanna , Sergio Arena and Ernesto Limiti
This paper presents the design flow of a compact GaAs MMIC for Extremely High Frequency (EHF) satellite communications. The proposed circuit enables sub-harmonic mixing capability and integrates a LO buffering section, thus allowing for low frequency and low power reference signal interface. Circuit design is described in detail providing a comprehensive view of the followed theoretical approach, starting from mixer core definition until the complete synthesis of LO/RF/IF interfaces. In particular, the design flow of an innovative three-conductor Marchand balun is deeply analysed. Fabricated MMIC operates in the 43.5-50 GHz band and results in a compact layout (2.4x2.4 mm2) featuring a port-to-port isolation better than 25 dB with a typical conversion loss of 12 dB.
2016-07-31
PIER C
Vol. 66, 139-147
Triple Band Notched UWB Antenna Design Using Electromagnetic Band Gap Structures
Naveen Jaglan , Binod Kanaujia , Samir Dev Gupta and Shweta Srivastava
A circular monopole antenna for ultra wideband (UWB) applications with triple band notches is proposed. The proposed antenna rejects worldwide interoperability for microwave access WiMAX band (3.3 GHz-3.8 GHz), wireless local area network WLAN band (5.15 GHz-5.825 GHz) and X-Band downlink satellite communication band (7.1 GHz-7.9 GHz). The antenna utilises mushroom-type and uniplanar Electromagnetic Band Gap (EBG) structures to achieve band-notched designs. The advantages of band-notched designs using EBG structures such as notch-frequency tuning, triple-notch antenna designs and stable radiation pattern are shown. The effect of variation of EBG structure parameters on which notched frequency depends is also investigated. Fabricated and measured results are in good agreement with simulated ones.
2016-07-29
PIER C
Vol. 66, 129-137
Gain Enhancement in Planar Monopole Antennas
Lin-Chuan Tsai
This paper proposes a planar monopole antenna design for achieving gain enhancement. The radiation pattern is achieved straightforwardly by employing a detached glass slab and placing a reflected metal slab after the glass slab onto the antenna structure. Geometrical parameters were examined to optimize the performance of the proposed antenna. Such a configuration causes constructive interference between the incident and reflected fields. The radiation patterns can be adjusted the thickness of the glass slab and dielectric constants. The radiated fields are redistributed because of the inclusion of the glass slab, which has a permittivity of εr = 7.75 and a thickness of h = 1 mm. Consequently, the planar monopole gain achieved using the glass slab and reflected metal slab is increased to approximately 5 dBi, whereas the antenna resonant frequency remains almost unchanged at nearly 14% in impedance bandwidth. The results obtained for the directional pattern, return loss, gain, and radiation efficiency of the proposed antenna were analyzed. The antenna volume of the radiation area and ground plane was 3 × 32 × 52 mm3. Detailed simulations and experiments were conducted to optimize the gain enhancement operations, and the measured results agreed with the simulated ones.
2016-07-27
PIER Letters
Vol. 61, 119-123
Electromagnetic Boundaries with PEC/PMC Equivalence
Ismo Veikko Lindell and Ari Sihvola
The most general electromagnetic boundary, defined by linear and local boundary conditions, is defined in terms of conditions which can be called generalized impedance boundary conditions. Requiring that the boundary be equivalent to PEC and PMC boundaries for its two eigenplane waves, which property is known to exist for many of its special cases, it is shown that the recently introduced Generalized Soft-and-Hard/DB (GSHDB) boundary is the most general boundary satisfying this property.