Vol. 49
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-08-12
A Comparative Study of Flux Cancellation Among Multiple Interconnected Modular Pads in Lumped IPT System
By
Progress In Electromagnetics Research M, Vol. 49, 131-140, 2016
Abstract
A lumped inductive power transfer system (IPT) with multiple modular pads differs from a stand-alone system. The magnetic coupling between adjacent modules is affected by the flux cancelation which further affects the power transmission. Thus, it is important to investigate the relationship between flux cancelation and system configuration. In this paper, the basic connection and operating mechanism for a modular IPT system are first discussed. Six cases are designed for two scenarios, including single and multiple secondary modules. Performances are compared in various primary excitation modes and secondary connection modes. Results show that the direction of canceled flux is determined by these modes. Matched modes will bring either a higher or a more stable coupling. And unmatched modes between primary and secondary sides tend to have the lowest coupling performance due to severe flux cancelation. Results provide a guidance for system design aiming at different power transfer characteristics.
Citation
Chun Qiu Kwok-Tong Chau Zhen Zhang Tze Wood Ching , "A Comparative Study of Flux Cancellation Among Multiple Interconnected Modular Pads in Lumped IPT System," Progress In Electromagnetics Research M, Vol. 49, 131-140, 2016.
doi:10.2528/PIERM16060703
http://www.jpier.org/PIERM/pier.php?paper=16060703
References

1. Li, C. J. and H. Lin, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, 2014.
doi:10.2528/PIER14071705

2. Poon, A., "A general solution to wireless power transfer between two circular loops," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
doi:10.2528/PIER14071201

3. Robichaud, A., M. Boudreault, and D. Deslandes, "Theoretical analysis of resonant wireless power transmission links composed of electrically small loops," Progress In Electromagnetics Research, Vol. 143, 485-501, 2013.
doi:10.2528/PIER13102306

4. Park, C., S. Lee, S. Y. Jeong, G. H. Cho, and C. T. Rim, "Uniform power I-type inductive power transfer system with DQ-power supply rails for on-line electric vehicles," IEEE Trans. Power Electron., Vol. 30, No. 11, 6446-6455, 2015.
doi:10.1109/TPEL.2015.2420372

5. Miller, J. M., P. T. Jones, J. M. Li, and O. C. Onar, "ORNL experience and challenges facing dynamic wireless power charging of EVs," IEEE Circuits Syst. Mag., Vol. 1, No. 2, 40-53, 2016.

6. Budhia, M., J. T. Boys, G. A. Covic, and C. Y. Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Trans. Ind. Electron., Vol. 60, No. 1, 261-270, 2013.
doi:10.1109/TIE.2011.2179274

7. Nagendra, G., G. A. Covic, and J. T. Boys, "Determining the physical size of inductive couplers for IPT EV systems," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 2, No. 3, 571-583, 2014.
doi:10.1109/JESTPE.2014.2302295

8. Qiu, C., K. T. Chau, C. Liu, W. Li, and F. Lin, "Quantitative comparison of dynamic flux distribution of magnetic couplers for roadway electric vehicle wireless charging system," J. Appl. Phys., Vol. 115, No. 17, 17A334, 2014.
doi:10.1063/1.4866882

9. Lin, F., G. A. Covic, and J. T. Boys, "Evaluation of magnetic pad sizes and topologies for electric vehicle charging," IEEE Trans. Power Electron., Vol. 30, No. 11, 6391-6407, 2015.
doi:10.1109/TPEL.2015.2419592

10. Qiu, C., K. T. Chau, C. Liu, T. W. Ching, and Z. Zhang, "Modular inductive power transmission system for high misalignment electric vehicle application," J. Appl. Phys., Vol. 117, No. 17, 17B528, 2015.
doi:10.1063/1.4918563