A Hybrid Method of Scattering from a Dielectric Target Above a Rough Surface: TE Case
Lin Li
Tian Lin Dong
Qingxia Li
A hybrid method, combining analytic Kirchhoff approximation (KA) and numerical method of moments (MoMs), is developed to solve the two-dimensional (2D) scattering problem of a dielectric target with arbitrary cross section above a moderate perfect electric conductor (PEC) rough surface under TE-polarized tapered wave incidence. The induced current on the rough surface is analytically expressed using the KA method, which depends on the tapered incident wave and the field illuminating by current distribution on the target, leaving only unknown induced current on the target. So the electric field integral equations of the induced currents on the target only can be derived; it allows a substantial reduction of computation time and memory requirement. Furthermore, for different secondary scattering of the underlying rough surface, different truncations of the rough surface are taken to speed up computation of the scattering contribution from the rough surface to the target. Making use of Monte Carlo realization, bistatic scattering from a cylindrical target above a PEC rough surface is well simulated to test validity and efficiency of the proposed method. Numerical results from the hybrid method have good agreements with those from the conventional method of moments. However, the computational time and the memory requirements have been greatly reduced.