Vol. 31
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-10
A 3-d Unconditionally Stable Laguerre-Rpim Meshless Method for Time-Domain Electromagnetic Computations
By
Progress In Electromagnetics Research M, Vol. 31, 279-293, 2013
Abstract
In this paper, a 3-D unconditionally stable meshless method is introduced to simulate time-domain electromagnetic problems. It combines the conventional radial point interpolation method (RPIM) and weighted decaying Laguerre polynomials together to discrete Maxwell's differential equations. The new method called Laguerre-RPIM retains the advantages of both the node-based meshless method and the unconditionally stable scheme of weighted Laguerre polynomials. The accuracy and efficiency of the proposed method are verified through two numeral examples. It can be seen from the computational results that the proposed method has a high accuracy and still remains stable when time step is 10 times of the Courant stability condition. Computational cost can be saved by more than 70% compared with the conventional RPIM method.
Citation
Feijiao Liu, Donglin Su, and Yilong Zhang, "A 3-d Unconditionally Stable Laguerre-Rpim Meshless Method for Time-Domain Electromagnetic Computations," Progress In Electromagnetics Research M, Vol. 31, 279-293, 2013.
doi:10.2528/PIERM13050609
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Max-well's equations in isotropic media," IEEE Trans. on Antennas on Propag., Vol. 14, No. 3, 302-307, 1966.

2. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

3. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaros, "Efficient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011.

4. Zhao, L. and K.-L. Wu, "A hybrid NFM/MoM full-wave analysis of layered prolate head model exposed to handset antenna," Progress In Electromagnetics Research, Vol. 123, 205-225, 2012.
doi:10.2528/PIER11110801

5. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress n Electromagnetics Research, Vol. 130, 525-540, 2012.

6. Kong, , Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step ADI-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.

7. Fotyga, G., K. Nyka, and M. Mrozowski, "Efficient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
doi:10.2528/PIER12021609

8. Wang, J. G. and G. R. Liu, "A point interpolation meshless method based on radial basis i functions," Int. J. Numer. Methods Eng., Vol. 54, 1623-1648, 2001.

9. Kaufmann, T., C. Fumeaux, and R. Vahldieck, "The meshless radial point interpolation method for time-domain electromagnetics," Digests of IEEE MTT-S Int. Microw. Symp., Vol. 61, No. 64, Atlanta, GA, Jun. 15-20, 2008.

10. Kaufmann, T., C. Fumeaux, and C. Engstrom, "A comparison of three meshless algorithms: Radial point interpolation, non-symmetric and symmetric Kansa method," Digests of IEEE MTT-S Int. Microw. Symp., 1-4, Atlanta, GA, Jun. 5-10, 2011.

11. Fumeaux, C., T. Kaufmann, D. Baumann, and M. Klemm, "Conformal and multi-scale time-domain methods: From tetrahedral mesh to meshless discretisation," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 161-164, May 21-24, 2012.

12. Lai, S. J., B. Z. Wang, and Y. Duan, "Meshless radial basis function method for transi-ent electromagnetic computations," IEEE Trans. on Magnetics, Vol. 44, No. 10, 2288-2295, 2008.
doi:10.1109/TMAG.2008.2001796

13. Tanaka, Y. and E. Kunisada, "Study on meshless method using RPIM for transient electromagnetic field," IEEE Trans. on Magnetics, Vol. 47, No. 5, 1178-1181, May 2011.
doi:10.1109/TMAG.2010.2089044

14. Yu, , Y. and Z. Chen, "A 3-D radial point interpolation method for meshless time-domain modeling," IEEE Trans. on Microwave Theory and Tech., Vol. 57, No. 8, 2015-2020.

15. Yu, Y. and Z. Chen, "Towards the development of unconditionally stable time-domain meshless numerical methods," IEEE Trans. on Microwave Theory and Tech., Vol. 58, No. 3, 578-586, Mar. 2010.
doi:10.1109/TMTT.2010.2040343

16. Yu, Y. and Z. Chen, "Implementation of material interface conditionsin the radial point interpolation meshless method," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2916-2923, 2011.
doi:10.1109/TAP.2011.2158969

17. Yu, Y. and Z. Chen, "Meshless RPIM modeling of open-structures using PMLs," Digest of the 2010 IEEE International Microwave Symposium, 1, Anaheim, May 23-28, 2010.

18. Chen, X., Z. Chen, Y. Yu, and D. Su, "An unconditionally stable radial point interpolation meshless method with Laguerre polynomials," IEEE Trans. on Antennas and Propag., Vol. 59, No. 10, 3756-3763, Oct. 2011.
doi:10.1109/TAP.2011.2163769

19. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
doi:10.1109/TMTT.2003.808732

20. Srinivasan, K., M. Swaminathan, and E. Engin, "Overcoming limitations of Laguerre-FDTD for fast time-domain EM simulation," EEE Int. Microwave Symp. Digest, 891-894, 2007.

21. Lacik, J., "Laguerre polynomials' scheme of transient analysis: Scale factor and number of temporal basis functions," Radioengineering, Vol. 18, No. 1, 23-28, 2009.

22. Ha, M. and M. Swaminathan, "A Laguerre-FDTD formulation for frequency-dependent dispersive materials," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, 225-227, Mar. 2011.
doi:10.1109/LMWC.2011.2119296