2009-09-18 Latest Published
By Md. Mijanur Rahman
Pankaj Kumar Choudhury
Progress In Electromagnetics Research M, Vol. 8, 249-261, 2009
Abstract
A novel approach for logic state dependent generation of polarized photon is proposed, where the logic states '0' and '1' are represented by two sub-spaces in the Hilbert space of the hyperfine states of rubidium atom (87Rb). Each subspace consists of a ground state, an intermediate state and an excited state. The atom is placed at the center of a two-mode cavity, and the cavity modes correspond to frequencies of the generated photon. Photon generation process involves raising the atom to the excited state within the corresponding subspace and letting it decay back to the initial (ground) state, emitting thereby a photon of logic state dependent polarization. In order to keep the driving laser frequencies far off from the cavity mode frequencies, the atom is raised to the excited state in two steps --- first from the ground state to the intermediate state and then from the intermediate state to the excited state. Polarization states of the photon represent the logic states, and can be used to transport logic from one node to another of the quantum network.