Vol. 8
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-26
An Efficient Hybrid High-Frequency Solution for the Composite Scattering of the Ship on Very Large Two-Dimensional Sea Surface
By
Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009
Abstract
Abstract:A hybrid high-frequency solution is proposed to analyze the bistatic electromagnetic scattering of the ship target on very large two-dimensional randomly rough sea surface in this paper. The comprehensive geometrical model of the ship and sea surface is designed by CAD tools and the sea power spectrum, and its electromagnetic scattering characteristic is evaluated with the method of equivalent currents (MEC). Since the electromagnetic interaction between the ship hull and the sea surface in the vicinity of the broadside is similar to the scattering mechanism of the dihedral reflector, the iterative physical optics method (IPO) is utilized to study the electromagnetic coupling effects. The shadowing correction based on the Z-Buffer technology is introduced to eliminate the effects of the irrelevant scattering resources. At last, the validity of the hybrid method is confirmed by the SAR image of the ship on the very large two-dimensional sea surface, and the numerical results are presented to analyze the composite scattering characteristics of the ship on the sea surface.
Citation
Wei Luo Min Zhang Yan Wei Zhao Hui Chen , "An Efficient Hybrid High-Frequency Solution for the Composite Scattering of the Ship on Very Large Two-Dimensional Sea Surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103
http://www.jpier.org/PIERM/pier.php?paper=09050103
References

1. Wang, X. and L.-W. Li, "Numerical characterization of bistatic scattering from pec cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001

2. Wang, X., C.-F. Wang, Y.-B. Gan, and L.-W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

3. Pino, M. R., R. J. Burkholder, and F. Obelleiro, "Spectral acceleration of the generalized forward-backward method," IEEE Trans. Antennas Propagat., Vol. 50, No. 6, 785-797, 2002.
doi:10.1109/TAP.2002.1017658

4. Zhang, Y., et al., "Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces," IEEE Trans. Antennas Propagat., Vol. 53, No. 5, 1631-1639, 2005.
doi:10.1109/TAP.2005.846721

5. Colak, D., R. J. Burkholder, and E. H. Newman, "Multiple sweep method of moments (MSMM) analysis of electromagnetic scattering from targets on ocean-like rough surfaces," IEEE Antennas and Propagation Society Int. Symp., Vol. 4, 2124-2127, 2000.

6. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A Monte-Carlo FDTD technique for rough surface scattering," IEEE Trans. Antennas Propagat., Vol. 43, 1183-1191, 1995.

7. Johnson, J. T., "A study of the four-path model for scattering from an object above a half space," IEEE Microwave and Optical Technology Letters, Vol. 30, No. 2, 130-134, 2001.
doi:10.1002/mop.1242

8. Kai, C., X.-J. Xu, and S.-Y. Mao, "EM backscattering of simplified ship model over sea surface based on a high frequency hybrid method," Journal of Electronics & Information Technology, Vol. 30, No. 6, 1500-1503, 2001.

9. Hasselmann, D. E., "Directional wave spectra observed during JONSWAP 1973," J. Phys. Oceanogr., Vol. 10, No. 7, 1264-1280, 1980.
doi:10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2

10. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas Propagat., Vol. 32, No. 3, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

11. Ando, M., et al., "Elimination of false singularities in GTD equivalent edge currents," IEEE Proc.-H, Vol. 138, No. 4, 289-296, 1991.

12. Obelleiro-Basteiro, F., J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032

13. Anderson, W. C., "Consequences of nonorthogonality on the scattering properties of dihedral reflectors," IEEE Trans. Antennas Propagat. , Vol. 35, No. 10, 1154-1159, 1987.
doi:10.1109/TAP.1987.1143993

14. Ogilvy, J. A., Theory of Wave Scattering from Random Rough Surfaces, Hilger, Bristol, 1991.

15. Arnold-Bos, A., A. Khenchaf, and A. Martin, "Bistatic radar imaging of the marine environment | Part 1: Theoretical background," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 11, 3372-3383, 2007.
doi:10.1109/TGRS.2007.897436