1. Veselago, V. G., "The electrodynamic of substance with simultaneously negative values of ε and μ," Usp. Sov. Phys., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
3. Bozza, G., G. Oliveri, and M. Raffetto, "Anomalous TEM modes in guiding structures filled with double negative and double positive materials," IEEE Microwave Wireless Comp. Lett., Vol. 17, No. 1, 19-21, 2007.
doi:10.1109/LMWC.2006.887243 Google Scholar
4. Marcos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Optic Express, Vol. 11, No. 7, 649-661, 2003. Google Scholar
5. Vendik, I., O. Vendik, I. Kolmakov, and M. Odit, "Modelling of isotropic double negative media for microwave applications," Opto-Electronics Review, Vol. 14, No. 3, 179-186, 2006.
doi:10.2478/s11772-006-0023-z Google Scholar
6. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
7. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585 Google Scholar
8. Engeta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Trans. Antennas Propag., Vol. 50, No. 1, 10-12, 2002. Google Scholar
9. Li, Y., L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental realization of a one-dimensional LHM-RHM resonator," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1522-1526, 2005.
doi:10.1109/TMTT.2005.845191 Google Scholar
10. Hand, T., S. Cummer, and N. Engeta, "The measured electric field spatial distribution within a metamaterial subwavelength cavity resonator," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1781-1788, 2007.
doi:10.1109/TAP.2007.898630 Google Scholar
11. Bozza, G., G. Oliveri, and M. Ra®etto, "Cavities involving metamaterials with an uncountable set of resonant frequencies," IEEE Microwave and Wireless Comp. Lett., Vol. 17, No. 8, 565-567, 2007.
doi:10.1109/LMWC.2007.901760 Google Scholar
12. Tretyakov, O. A., "The method of modal basis," Radiotechnika i Elektronika, Vol. 31, 1071-1082, 1986. Google Scholar
13. Tretyakov, O. A., "Essentials of nonstationary and nonlinear electromagnetic field theory," Analytical and Numerical Methods in the Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, O. A. Tretyakov (eds.), Science House Co., Ltd., Tokyo, 1993. Google Scholar
14. Tretyakov, O. A. and F. Erden, "Temporal cavity oscillations caused by a wide-band waveform," Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008.
doi:10.2528/PIERB08031222 Google Scholar
15. Ango, A., Mathematics for Electric and Radio Engineers, Nauka, 1965.