Vol. 8
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-07-03
Comparison of Adaptive-Network-Based Fuzzy Inference System Models for Analysis of Conductor-Backed Asymmetric Coplanar Waveguides
By
Progress In Electromagnetics Research M, Vol. 8, 1-13, 2009
Abstract
A method based on adaptive-network-based fuzzy inference system (ANFIS) is presented for the analysis of conductor-backed asymmetric coplanar waveguides (CPWs). Four optimization algorithms, hybrid learning, simulated annealing, genetic, and least-squares, are used to determine optimally the design parameters of the ANFIS. The results of ANFIS models are compared with the results of conformal mapping technique, a commercial electromagnetic simulator IE3D, and the experimental works realized in this study. There is very good agreement among the results of ANFIS models, quasi-static method, IE3D, and experimental works. The proposed ANFIS models are not only valid for conductor-backed asymmetric CPWs but also valid for conductor-backed symmetric CPWs.
Citation
Mustafa Turkmen Celal Yildiz Kerim Guney Sabri Kaya , "Comparison of Adaptive-Network-Based Fuzzy Inference System Models for Analysis of Conductor-Backed Asymmetric Coplanar Waveguides," Progress In Electromagnetics Research M, Vol. 8, 1-13, 2009.
doi:10.2528/PIERM09050803
http://www.jpier.org/PIERM/pier.php?paper=09050803
References

1. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, John Wiley and Sons, 2001.
doi:10.1002/0471224758

2. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques,, Vol. 35, No. 3, 260-267, 1987.
doi:10.1109/TMTT.1987.1133637

3. Shih, Y. C., "Broadband characterization of conductor-backed coplanar waveguide using accurate on-wafer measurement techniques," Microwave Journal, Vol. 34, No. 4, 95-105, 1991.

4. Fang, S. J. and B. S. Wang, "Analysis of asymmetric coplanar waveguide with conductor backing," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 2, 238-240, 1999.
doi:10.1109/22.744300

5. Karpuz, C. and A. Gorur, "Effect of upper shielding and conductor backing on quasi static parameters of asymmetric coplanar waveguides," Int. J. RF and Microwave CAE, Vol. 9, 394-402, 1999.

6. Ghione, G. and C. U. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronic Letters, Vol. 19, No. 18, 734-735, 1983.
doi:10.1049/el:19830500

7. Cheng, K. K. M. and J. K. A. Everard, "A new technique for the quasi-TEM analysis of conductor-backed coplanar waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1589-1592, 1993.
doi:10.1109/22.245682

8. Shih, Y. C. and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronic Letters, Vol. 18, No. 12, 538-540, 1982.
doi:10.1049/el:19820365

9. Neto, A. G., C. S. D. Rocha, D. Bajon, and H. Baudrand, "Analysis of the conductor-backed coplanar waveguide by an alternative formulation of the transverse resonance technique," SBMO/IEEE MTT-S Int., 851-855, 1995.
doi:10.1109/SBMOMO.1995.509726

10. Hotta, M., Y. Qian, and T. Itoh, "Efficient FDTD analysis of conductor-backed CPW's with reduced leakage loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1585-1587, 1999.
doi:10.1109/22.780412

11. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Analysis of conductor-backed coplanar waveguides using adaptive-network-based fuzzy inference system models," Microwave and Optical Technology Letters, Vol. 51, No. 2, 439-455, 2009.
doi:10.1002/mop.24059

12. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Transactions on Systems Man and Cybernetics, Vol. 23, No. 3, 665-685, 1993.
doi:10.1109/21.256541

13. Jang, J.-S. R., C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.

14. Ozer, S., K. Guney, and A. Kaplan, "Calculation of the characteristic impedance and effective dielectric constant of coplanar waveguide with the use of fuzzy inference systems," Proc. of 8th TAINN'99, Istanbul, Turkey, 187-196, 1999.

15. Tayarani , M. and Y. Kami, "Qualitative analysis in engineering electromagnetics: An application to general transmission lines," IEICE Trans. on Electronics, Vol. E84C, No. 3, 364-375, 2001.

16. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE MTT-S Digest, 1117-1120, 2002.

17. Ubeyli, E. D. and I. Guler, "Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity sidewall profiles," Neurocomputing, Vol. 70, No. 1--3, 196-204, 2006.

18. Rahouyi, E. B., J. Hinojosa, and J. Garrigos, "Neurofuzzy modeling techniques for microwave components," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 72-74, 2006.
doi:10.1109/LMWC.2005.863245

19. Miraftab, V. and R. R. Mansour, "EM-based microwave circuit design using fuzzy logic techniques," IEE Proc. Microwave Antennas Propag., Vol. 153, No. 6, 495-501, 2006.
doi:10.1049/ip-map:20050190

20. Hinojosa, J. and G. Dome'nech-Asensi, "Space-mapped neuro-fuzzy optimization for microwave device modeling," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1328-1334, 2007.
doi:10.1002/mop.22460

21. Hinojosa, J., G. Dome'nech-Asensi, and J. Martı'nez-Alajarı'n, "Development of VHDL-AMS neuro-fuzzy behavioral models for RF/microwave passive components," Int. J. RF and Microwav CAE, Vol. 17, No. 3, 335-344, 2007.
doi:10.1002/mmce.20228

22. Koziel, S. and J. W. Bandler, "A space-mapping approach to microwave device modeling exploiting fuzzy systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2539-2547, 2007.
doi:10.1109/TMTT.2007.909605

23. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Adaptive neuro-fuzzy models for the quasi-static analysis of microstrip line," Microwave and Optical Technology Letters, Vol. 50, No. 5, 1191-1196, 2008.
doi:10.1002/mop.23322

24. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neurofuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208

25. Gaoua, S., L. Ji, Z. Cheng, F. A. Mohammadi, and M. C. E. Yagoub, "Fuzzy neural-based approaches for e±cient RF/microwave transistor modeling," Int. J. RF and Microwave CAE, Vol. 19, No. 1, 128-139, 2009.
doi:10.1002/mmce.20323

26. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, No. 4598, 671-680, 1983.
doi:10.1126/science.220.4598.671

27. Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, Addison-Wesley, MA, 1989.

28. Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, Michigan, 1975.

29. Dennis, J. E., Nonlinear Least-Squares, State of the Art in Numerical Analysis, 269-312, Academic Press, 1977.

30. Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math., Vol. 11, 431-441, 1963.
doi:10.1137/0111030

31. Zeland Software Inc., IE3D, , Version 12.12, www.zeland.com., 2007.