Vol. 31
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-06-14
Design Optimization of a Novel Magnetic Switchable Device Based on Halbach Array
By
Progress In Electromagnetics Research M, Vol. 31, 143-158, 2013
Abstract
The paper deals with the design and optimization of a novel magnetic switchable device based on Halbach array. The magnetic field in air gap is adjustable by rotating the center axis of adhesion mechanism so that the magnetic adhesion force is variable, and it is convenient for device to adsorb on and detach from the ferromagnetic workpiece or surface. The magnetic field model is established by Fourier series method, and the optimal dimensions of configuration are obtained by finite element parameter approximation method for best performing design. The magnetic force of novel optimal device is measured, and a good agreement between simulation and measurement is found. The results are compared to the traditional mechanism, and it is shown that the utilization ratio of magnets of novel optimal mechanism is 2.2 times larger than the H-type one with the same usage of magnets, while its consumption of soft iron is only 12.7% of the H-type one.
Citation
Yong Chen Changming Wang Jiandong Bao , "Design Optimization of a Novel Magnetic Switchable Device Based on Halbach Array," Progress In Electromagnetics Research M, Vol. 31, 143-158, 2013.
doi:10.2528/PIERM13041301
http://www.jpier.org/PIERM/pier.php?paper=13041301
References

1. Rochat, F., S. Patrick, B. Michael, M. Stephane, M. Francesco, and B. Hannes, "Design of magnetic switchable device (MSD) and applications in climbing robot," Proc. of 13th Int. Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 357-382, 2010.

2. Jose, B., T. Kenjiro, K. Tatsuaki, and K. Robert, "Compliant distributed magnetic adhesion device for wall climbing," Proc. of the IEEE Int. Conference on Robotics and Automation, 10-14, Roma, 2007.

3. Coey, J. M. D., "Permanent magnet applications," J. Magn. Magn. Mater., Vol. 248, 441-456, 2002.
doi:10.1016/S0304-8853(02)00335-9

4. Chu, B., K. Jung, C. S. Han, J. Kim, and D. Hong, "A survey of climbing robots: Locomotion and adhesion," Int. J. Precis. Eng. Manuf., Vol. 11, No. 4, 633-647, 2010.
doi:10.1007/s12541-010-0075-3

5. Fischer, W., F. Tache, and R. Siegwart, "Magnetic wall climbing robot for thin surfaces with specific obstacles," Field and Service Robotics, Vol. 42, 551-561, 2008.
doi:10.1007/978-3-540-75404-6_53

6. Yao, P. X. and D. W. Li, "The magnetic field analysis and optimization of permanent-magnetic adhesion device for a novel wall-climbing robot," Proc. of the IEEE Conference on International Technology and Innovation, 2-6, 2009.

7. Zhang, Y. M., T. Dodd, K. Atallah, and I. Lyne, "Design and optimization of magnetic wheel for wall and ceiling climbing robot," Proc. of the IEEE Int. Conference on Mechatronics and Automation, 1393-1398, 2010.

8. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

9. Liu, C. and K.-T. Chau, "Electromagnetic design and analysis of double-rotor °ux-modulated permanent-magnet machines," Progress In Electromagnetics Research, Vol. 131, 81-97, 2012.

10. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

11. Torkaman, H., E. Afjei, and , "Magnetostatic field analysis regarding the e®ects of dynamic eccentricity in switched reluctance motor," Progress In Electromagnetics Research M, Vol. 8, 163-180, 2009.
doi:10.2528/PIERM09060205

12. Halbach, K., "Design of permanent multipole magnets with oriented rare Earth cobalt material," Nucl. Instrum. Methods,, Vol. 169, 1-10, 1981.

13. Liang, Y., L. Zhang, T. Wang, Z. Jiao, C.-Y. Chen, and I.-M. Chen, "Magnetic field of tubular linear machines with dual Halbach array," Progress In Electromagnetics Research, Vol. 136, 283-299, 2013.

14. Jang, S. and L. Sung, "Comparison of two types of PM linear synchronous servo and miniature motor with air cored film coil," IEEE Trans. Magn., Vol. 38, No. 5, 3264-3266, 2002.
doi:10.1109/TMAG.2002.802130

15. Guo, F., Y. Tang, L. Ren, and J. Li, "Structural parameter optimization design for Halbach permanent maglev rail," Physica C: Superconductivity, Vol. 470, No. 20, 1787-1790, 2010.
doi:10.1016/j.physc.2010.05.207

16. Choi, J. S. and J. Yoo, "Design of a Halbach magnet array based on optimization techniques," IEEE Trans. Magn., Vol. 44, No. 10, 2361-2366, 2008.
doi:10.1109/TMAG.2008.2001482

17. Shute, H. A., J. C. Mallinson, D. T. Wilton, and D. J. Mapps, "One-sided °uxes in planar, cylindrical, and spherical magnetized structures," IEEE Trans. Magn., Vol. 36, No. 2, 440-451, 2000.
doi:10.1109/20.825805

18. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

19. Seok, O. and S. L. Jin, "Hybrid genetic algorithms for feature selection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 11, 1424-1437, 2004.
doi:10.1109/TPAMI.2004.105

20. Bai, Z. C. and X. N. Li, "Optimization design of magnetorhe-ological damper inserted into servo pneumatic rotary actuator," Journal of Nanjing University of Science and Technology, Vol. 36, No. 3, 534-539, 2012.