Vol. 31
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-05-23
On the Success of Electromagnetic Analytical Approaches to Full Time-Domain Formulation of Skin Effect Phenomena
By
Progress In Electromagnetics Research M, Vol. 31, 29-43, 2013
Abstract
Maxwell equations can be used to formulate an analytical full time-domain theory of skin effect phenomena in circular cylindrical conductors without any detour into the frequency domain. The paper shows how this can be done and concomitantly provides the means to determine the time-varying per unit length voltage drop along the conductor from a given time-varying conductor current. The developed relationship between voltage and current is not very complicated and led the authors to examine the reasons why it has never been utilized in transient analysis, nor given special emphasis in the literature. Those reasons are thoroughly examined and the conclusion is that the conditions required for the application of a purely time-domain skin effect theory are very restrictive.
Citation
Jose Antonio Marinho Brandao Faria, and Malcolm Stuart Raven, "On the Success of Electromagnetic Analytical Approaches to Full Time-Domain Formulation of Skin Effect Phenomena," Progress In Electromagnetics Research M, Vol. 31, 29-43, 2013.
doi:10.2528/PIERM13042405
References

1. Maxwell, J. C., Treatise on Electricity and Magnetism, Articles 689, 690, Vol. 2, Oxford University Press, Oxford, UK, 1892.

2. Dwight, H., "Skin effect in tubular and flat conductors," AIEE Trans., Vol. 37, Part II, 1379-1403, 1918.

3. Cockcroft, J., "Skin effect in rectangular conductors at high frequencies," Proc. Roy. Soc., Vol. 122, 533-542, 1929.
doi:10.1098/rspa.1929.0038

4. Arnold, A., "The alternating current resistance of tubular conductors," J. IEE, Vol. 78, 580-593, 1936.

5. Wheeler, H. A., "Formulas for the skin-effect," Proc. IRE, Vol. 30, 412-424, 1942.
doi:10.1109/JRPROC.1942.232015

6. Silvester, P., "The accurate calculation of skin effect in conductors of complicated shape," IEEE Trans. Power App. Syst., Vol. 87, 735-742, 1968.
doi:10.1109/TPAS.1968.292187

7. Waldow, P. and I. Wolff, "The skin-effect at high frequencies," IEEE Trans. Microw. Theory Tech., Vol. 33, 1076-1081, 1985.
doi:10.1109/TMTT.1985.1133172

8. Morgan, V., R. Findlay, and S. Derrah, "New formula to calculate the skin effect in isolated tubular conductors at low frequencies," EE Proc. Sci. Meas. Technol., Vol. 147, 169-171, 2000.
doi:10.1049/ip-smt:20000420

9. Mingli, W. and F. Yu, "Numerical calculations of internal impedance of solid and tubular cylindrical conductors under large parameters," IEE Proc. Generation Trans. Distrib., Vol. 151, 67-72, 2004.
doi:10.1049/ip-gtd:20030981

10. Gatous, O. M. and J. Pissolato, "Frequency-dependent skin-effect formulation for internal resistance and internal inductance of a solid cylindrical conductor," IEE Proc. Microw. Ant. and Propag., Vol. 151, 212-216, 2004.
doi:10.1049/ip-map:20040469

11. Coufal, O., "Current density in a long solitary tubular conductor," J. Physics A: Math. Theory, Vol. 41, No. 4, 145401-14, 2008.

12. Lovric, D., V. Boras, and S. Vujevic, "Accuracy of approximate formulas for internal impedance of tubular cylindrical conductors for large parameters," Progress In Electromagnetics Research M, Vol. 16, 171-184, 2011.

13. Faria, J. A., "A matrix approach for the evaluation of the internal impedance of multilayered cylindrical structures," Progress In Electromagnetics Research B, Vol. 28, 351-367, 2011.

14. Faria, J. A., "Skin effect in inhomogeneous Euler-Cauchy tubular conductors," Progress In Electromagnetics Research M, Vol. 18, 89-101, 2011.

15. Faria, J. A., "A circuit approach for the electromagnetic analysis of inhomogeneous cylindrical structures," Progress In Electromagnetics Research B, Vol. 30, 223-238, 2011.

16. Yen, C., Z. Fazarinc, and R. L. Wheeler, "Time-domain skin-effect model for transient analysis of lossy transmission lines," Proc. IEEE, Vol. 70, 750-757, 1982.

17. Tripathi, V. K. and J. B. Rettig, "A SPICE model for multiple coupled microstrips and other transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 33, 1513-1518, 1985.
doi:10.1109/TMTT.1985.1133248

18. Costache, G., "Finite element method applied to skin-effect problems in strip transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 35, 1009-1013, 1987.
doi:10.1109/TMTT.1987.1133799

19. Djordjevic, A. R., T. K. Sarkar, and E. F. Harrington, "Time-domain response of multiconductor transmission lines," Proc. IEEE, Vol. 75, 643-764, 1987.

20. Tsuk, M. and J. Kong, "A hybrid method for the calculation of the resistance and inductance of transmission lines with arbitrary cross sections," IEEE Trans. Microw. Theory Tech., Vol. 39, 1338-1347, 1991.
doi:10.1109/22.85409

21. Chang, E. C. and S. Kang, "Computationally efficient simulation of a lossy transmission line with skin effect by using numerical inversion of Laplace transform," IEEE Trans. Circuits and Syst., Vol. 39, 861-868, 1992.

22. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley, New York, USA, 1994.

23. Dular, P., R. V. Sabariego, and L. Krahenbuhl, "Subdomain finite element method for efficiently considering strong skin and proximity effects ," IEEE Trans. Mag., Vol. 44, 738-741, 2008.
doi:10.1109/TMAG.2007.915817

24. Dedkova, J. and L. Brancik, "Laplace transform and FDTD approach applied to MTL simulation," PIERS Online, Vol. 4, No. 1, 16-20, 2008.

25. Giacoletto, L. J., "Frequency- and time-domain analysis of skin effects," IEEE Trans. Mag., Vol. 32, 220-229, 1996.
doi:10.1109/20.477574

26. Faria, J. A., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, UK, 2008.
doi:10.1002/9780470697498

27. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Vandermonde matrices and Toeplitz matrices," umerical Recipes: The Art of Scientific Computing, Vol. 3rd, Cambridge Univ. Press, Cambridge, UK, 2007.

28. Knuth, D. E. and T. K. Buckholtz, "Computation of tangent, Euler, and Bernoulli numbers," Math. Comput., Vol. 21, 663-688, 1967.