Vol. 31
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-06-29
Conductor Fusing and Gapping for Bond Wires
By
Progress In Electromagnetics Research M, Vol. 31, 199-214, 2013
Abstract
In this paper, fusing of a metallic conductor is studied by judiciously using the solution of the one-dimensional heat equation, resulting in an approximate method for determining the threshold fusing current. The action is defined as an integration of the square of the wire current over time. The burst action (the action required to completely vaporize the material) for an exploding wire is then used to estimate the typical wire gapping action (involving wire fusing), from which gapping time can be estimated for a gapping current greater than a factor of two over the fusing current. The test data are used to determine the gapped length as a function of gapping current and to show, for a limited range, that the gapped length is inversely proportional to gapping time. The gapping length can be used as a signature of the fault current level in microelectronic circuits.
Citation
Kenneth Chien-Ying Chen, Larry Kevin Warne, Yau Tang Lin, Robert L. Kinzel, Johnathon D. Huff, Michael B. McLean, Mark W. Jenkins, and Brian M. Rutherford, "Conductor Fusing and Gapping for Bond Wires," Progress In Electromagnetics Research M, Vol. 31, 199-214, 2013.
doi:10.2528/PIERM13051311
References

1. Preece, W. H., "On the heating effects of electric currents," Proceedings of the Royal Society of London, Vol. 36, 464, 1884.
doi:10.1098/rspl.1883.0133

2. Preece, W. H., "On the heating effects of electric currents," Proceedings of the Royal Society of London,, Vol. 43, No. 2, 280, 1887.
doi:10.1098/rspl.1887.0133

3. Krabbenborg, B., "High current bond design rules based on bond pad degradation and fusing of the wire," Microelectronics Reliability, Vol. 39, No. 77, 1999.

4. Touloukian, Y. S., Thermophysical Properties of High Temperature Solid Materials. Volume 1: Elements, 7-14, 534-559, The MacMillan Company, New York , 1967.

5. Chen, K. C., T. Y. Lin, and L. K. Warne, "Bond wire and bridge wire fusing,", SAND2011-1658, Mar. 2011.

6. Jackson, J. D., Classical Electromagnetics, John Wiley & Sons, New York, 1975.

7. Kaye, G. W. C. and T. H. Laby, Tables of Physical and Chemical Constants, John Wiley & Sons, Longman Scientific & Technical, New York, 1986.

8. Rayleigh, L. and J. W. Strutt, "On the instability of cylindrical fluid surfaces," Phil. Mag., Vol. 34, 177-180, 1892.

9. Huff, J. D., M. B. McLean, M. W. Jenkins, B. M. Rutherford, and , "1 mil gold bond wire study,", SAND2013-3715, Jun. 2013.

10. Tucker, T. L. and R. P. Toth, "EBWL: A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements,", SAND75-0041, Apr. 1975.

11. Chen, K. C. and W. P. Brigham, "EBW gapping study,", SAND2001-0698, Sandia National Laboratories, Albuquerque, NM, Mar. 2001.

12. Loh, E., "Physical analyses for data on fused-open bond wires," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 6, No. 2, 209-217, 1983.
doi:10.1109/TCHMT.1983.1136162