Vol. 31
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-06-03
Improved Immunity Measurement of a Microcontroller to Conducted Continuous Wave Interference
By
Progress In Electromagnetics Research M, Vol. 31, 117-127, 2013
Abstract
This paper discusses an improved in-situ immunity measurement test bench of a microcontroller -PIC18F458 to conducted continuous wave interference (CWI). The updated measurement algorithm gives more accurate measurement result. Compared with normal failure criterion, the DC shift failure criterion is adopted because it gives better description of the immunity behavior of the microcontroller. Finally, the susceptibility results are explained in detail.
Citation
Fayu Wan Jun-Xiang Ge Yong Zhou Bing Yu , "Improved Immunity Measurement of a Microcontroller to Conducted Continuous Wave Interference," Progress In Electromagnetics Research M, Vol. 31, 117-127, 2013.
doi:10.2528/PIERM13041902
http://www.jpier.org/PIERM/pier.php?paper=13041902
References

1. IEC EMC Task Force, "Direct RF power injection to measure the immunity against conducted RF-disturbances of integrated circuits up to 1 GHz,", IEC Draft Tech. Rep., IEC 62132-3, Aug. 2001.
doi:10.1109/TEMC.2008.918983

2. Chahine, I., M. Kadi, E. Gaboriaud, A. Louis, and B. Mazari, "Characterization and modeling of the susceptibility on integrated circuits to conducted electromagnetic disturbance up to 1 GHz," IEEE Trans. Electromagn. Compat., Vol. 50, No. 2, 285-293, May 2008.
doi:10.1049/iet-smt:20060142

3. Chahine, I., M. Kadi, E. Gaboriaud, X. Gallenne, A. Louis, and B. Mazari, "Enhancement of accuracy for measuring the susceptibility of integrated circuits to conducted electromagnetic disturbances," IET Sci. Meas. Technol., Vol. 1, No. 5, 240-244, Sep. 2007.
doi:10.1049/el:20073130

4. Boyer, A., E. Sicard, and S. Bendhia, "Characterization of electromagnetic susceptibility of integrated circuits using near-field scan," IET Electron. Lett., Vol. 43, No. 1, 15-16, Jan. 2007.
doi:10.1109/TEMC.2007.911920

5. Alaeldine, A., R. Perdriau, M. Ramdani, J. Levant, and M. Drissi, "A direct power injection model for immunity prediction in integrated circuits," IEEE Trans. Electromagn. Compat., Vol. 50, No. 2, 52-62, Feb. 2008.
doi:10.2528/PIERB11020802

6. Paez, E., C. Tremola, and M. A. Azpurua, "A proposed method for quantifying uncertainty in RF immunity testing due to EUT presence," Progress In Electromagnetics Research B, Vol. 29, 175-190, 2011.
doi:10.1109/81.989173

7. Fiori, F. and P. S. Crovetti, "Nonlinear effects of radio-frequency interference in operational amplifier," IEEE Trans. on Circuits Syst. I, Vol. 49, No. 3, 367-372, Mar. 2002.

8. Wan, F., F. Duval, X. Savatier, A. Louis, and B. Mazari, "Study of susceptibility of an MCU control system in the automotive field," Asia-Pacific Int. Symp. on EMC, 610-613, Beijing, China, Apr. 2010.

9. Sketoe, J. G., Integrated Circuit Electromagnetic Immunity Handbook, National Aeronautics and Space Administration, Marshall Space Flight Center , 2000.

10. Boyer, A., S. Bendhia, and E. Sicard, "Modeling of a mixed signal processor susceptibility to near-field aggression," IEEE Symp. on EMC, 1-5, Honolulu, USA, Jul. 2007.
doi:10.1016/j.microrel.2009.06.013

11. Gros, J.-B., G. Duchamp, A. Meresse, and J.-L. Levant, "Electromagnetic immunity model of an ADC for microcontroller's reliability improvement," Micro. Rel., Vol. 49, No. 9-11, 963-966, Sep. 2009.
doi:10.1049/el.2010.2988

12. Wan, F., F. Duval, X. Savatier, A. Louis, and B. Mazari, "Effects of conducted electromagnetic interference on an analog-to-digital converter," IET Electron. Lett., Vol. 47, No. 1, 23-25, Jan. 23-25, 2011.

13. Redoute, J. and M. Steyaert, EMC of Analog Integrated Circuits, Springer, Berlin, 2009.
doi:10.1007/b137864

14. Bendhia, S., M. Ramdani, and E. Sicard, Electromagnetic Compatibility of Integrated Circuits, Techniques for Low Emission and Susceptibility, Springer-Verlag, Berlin, Germany, 2006.