Vol. 31
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-09
Simulation of SAR Under Ultra-Wide Band Electromagnetic Pulse in Human Tissue
By
Progress In Electromagnetics Research M, Vol. 31, 263-278, 2013
Abstract
In this study, a three-dimensional (3-D) structural model of an adult male body, including 12 kinds of tissues and organs, was analyzed using a 3-D model design application (i.e., 3ds Max). The standard model of Asians was used as reference. The electrical parameters of brain tissues at different electromagnetic frequencies were introduced to obtain the electromagnetic model. Computational electromagnetic software based on the finite-difference time-domain was used to calculate the model absorption of electromagnetic waves under ultra-wide band electromagnetic irradiation. The specific absorption rates (SARs) of the ensemble average and the model human tissue were also obtained. This study aims to provide a parameter for the development of electromagnetic radiation protection standards, and to discuss related research.
Citation
Teng Jiao Xiao Yu Hao Lv Yang Zhang Hui Jun Xue Yan Wang Jianqi Wang , "Simulation of SAR Under Ultra-Wide Band Electromagnetic Pulse in Human Tissue," Progress In Electromagnetics Research M, Vol. 31, 263-278, 2013.
doi:10.2528/PIERM13052019
http://www.jpier.org/PIERM/pier.php?paper=13052019
References

1. Lu, S.-T., S. P. Mathur, Y. Akyel, and J. C. Lee, "Ultrawide-band electromagnetic pulses induced hypotension in rats," Physiology & Behavior, Vol. 65, 753-761, 1999.
doi:10.1016/S0031-9384(98)00214-5

2. Pakhomov, A. G., P. Gajsek, L. Allen, B. E. Stuck, and M.R. Murphy, "Comparison of dose dependences for bioeffects of continuous-wave and high-peak power microwave emissions using gel-suspended cell cultures," Bioelectromagnetics, Vol. 23, 158-167, 2002.
doi:10.1002/bem.108

3. Miler, S. A., M. E. Bronson, and M. R. Murphy, "Ultrawideband radiation and pentylenetetrazol-induced convulsions in rats," Bioelectromagnetics, Vol. 20, 327-329, 1999.
doi:10.1002/(SICI)1521-186X(1999)20:5<327::AID-BEM9>3.0.CO;2-E

4. Natarajan, M., Vijayalaxmi, M. Szilagyi, F. N. Roldan, and M. L. Meltz, "NF-kB DNA-bingding activity after high peak power pulsed microwave (8.2 GHz) exposure of normal human monocytes," Bioelectromagnetics, Vol. 23, 271-277, 2002.
doi:10.1002/bem.10018

5. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Diference Time-Domain Method, Artech House, Boston, 2000.

6. Valuev, I., A. Deinega, A. Knizhnik, and B. Potapkin, "Creating numerically efficient FDTD simulations using generic C++ programming," ICCSA 2007, O. Gervasi and M. Gavrilova (Eds.), LNCS 4707, Part III, 213-226, 2007.

7. Gedney, S. D., "Introduction to the finite-difference time-domain (FDTD) method for electromagnetics," Synthesis Lectures on Computational Electromagnetics, Vol. 6, No. 1, 1-250, 2011.
doi:10.2200/S00316ED1V01Y201012CEM027

8. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803

9. Guo, X. M., Q. X. Guo, W. Zhao, and W. H. Yu, "Parallel FDTD simulation using numa acceleration technique," Progress In Electromagnetics Research Letters, Vol. 28, 1-8, 2012.
doi:10.2528/PIERL11101706

10. Dev, S. R. S., Y. Gariepy, V. Orsat, and G. S. V. Raghavan, "FDTD modeling and simulation of microwave heating of in-shell EGGS," Progress In Electromagnetics Research M, Vol. 13, 229-243, 2010.
doi:10.2528/PIERM10072609

11. Sabri, M. M. and J. Rashed-Mohassel, "Application of FDTD-based macromodeling for signal integrity analysis in practical PCBS," Progress In Electromagnetics Research Letters, Vol. 5, 45-55, 2008.
doi:10.2528/PIERL08103103

12. Yan, Y., S. Shi, and D. Ge, "Complex object modeling for FDTD method," Journal of Xidian University, Vol. 25, 389-392, 1998.