Search Results(13676)

2013-01-24
PIER C
Vol. 37, 15-28
A Magneto-Inductive Link Budget for Wireless Power Transfer and Inductive Communication Systems
Johnson Ihyeh Agbinya
This paper presents a propagation model and inductive link budget based on link equations for chains of inductive loops as the basis for determining the link budget of an inductive communication and wireless power transfer systems. The link between the transmitter and receiver is modeled in similar format as in radio frequency systems. The transmitter antenna gain, path loss model and receiver antenna gain are also modeled for the inductive case. This allows the magnetic path loss to be estimated accurately. Also the induced receiver current due to a transmitter voltage can be computed apriori enabling efficient design of inductive links and transceivers.
2013-01-24
PIER C
Vol. 37, 1-13
An L-Probe Fed Stacked Rectangular Microstrip Antenna Combined with a Ring Antenna for Triple Band Operation in Its
Takafumi Fujimoto and Daisuke Tanaka
A stacked rectangular microstrip antenna with a shorting plate combined with a rectangular ring microstrip antenna is proposed for triple band operation (GPS, VICS and ETC) in ITS. The two microstrip antennas are excited by an L-probe feed. In the ETC band, axial ratio deteriorates due to asymmetrical distributions of the electric current in the ring microstrip antenna. In this paper, an approach to improve the axial ratio for ETC is also proposed. The proposed antenna has the proper radiation patterns and impedance matching for the GPS, VICS and ETC.
2013-01-24
PIER C
Vol. 36, 249-259
A Substrate Integrated Waveguide to Substrate Integrated Coaxial Line Transition
Qiang Liu , Yuan'an Liu , Yongle Wu , Jun-Yu Shen , Shulan Li , Cuiping Yu and Ming Su
In this paper, a novel substrate integrated waveguide (SIW) to substrate integrated coaxial line (SICL) transition using the 3 dB SIW power divider (PD) and SIW 180° phase shifter (PS) is proposed. The SIW-to-SICL transition realizes the easy integration of SIW, SICL, and active device in the same microwave communication system based on the substrate-integrated technology (SIT). To validate the design concept, the prototype has been fabricated and measured. Measurements are in good agreement with simulations, and shows that the SIW-to-SICL transition features ultra-low insertion loss lower than 0.25 dB and with a fractional bandwidth over 10%.
2013-01-24
PIER M
Vol. 28, 229-244
Behavior of Electromagnetic Waves at Dielectric Fractal-Fractal Interface in Fractional Spaces
Muhammad Omar and Muhammad Junaid Mughal
In this paper, reflection and transmission coefficients at dielectric fractal-fractal interface are discussed. The ratio of permittivity of the two dielectric fractal media is kept constant, while the dimension is varied in order to get the desired results. Conventional results are recovered for the integer dimensions. The proposed expressions are useful to study the behavior of electromagnetic waves for non-integer dimensions, multiple fractal interfaces and waveguides. Moreover, it is also helpful to understand the variation in the magnitudes of reflection and transmission coefficients with the difference in dimensionality at interface of the two fractal media.
2013-01-24
PIER M
Vol. 28, 213-228
Studies on the Dynamics of Two Bilaterally Coupled Periodic Gunn Oscillators Using Melnikov Techniques
Bishnu Charan Sarkar , Manoj Dandapathak , Suvra Sarkar and Tanmoy Banerjee
Dynamical stability of a system of bilaterally coupled periodic Gunn oscillators (BCPGO) has been studied employing Melnikov's global perturbation technique. In the BCPGO system, a fractional part of the output signal of one oscillator is injected into the other through a coupling network. The injected signal is considered as a perturbation on the free running dynamics of the receiving oscillator and the amount of perturbation is quantified by a parameter named coupling factor (CF). The limiting values of CFs leading to chaotic dynamics of the BCPGO system are predicted analytically by calculating the Melnikov functions (MFs) in the respective cases. Also the effect of the frequency detuning (FD) between the Gunn Oscillators (GOs) on the computed values of MFs has been examined. A thorough numerical simulation of the BCPGO dynamics has been done by solving the system equations. The obtained results are in qualitative agreement with the analytically predicted observations regarding the roles of the system parameters like CF and FD.
2013-01-24
PIER
Vol. 136, 607-622
Structure Analysis of Single- and 2 Multi-Frequency Subspace Migrations in 3 Inverse Scattering Problems
Young-Deuk Joh , Young Mi Kwon , Joo Young Huh and Won-Kwang Park
We carefully investigate the structure of single- and multi frequency imaging functions, that are usually employed in inverse scattering problems. Based on patterns of the singular vectors of the Multi-Static Response (MSR) matrix, we establish a relationship between imaging functions and the Bessel function. This relationship indicates certain properties of imaging functions and the reason behind enhancement in the imaging performance by multiple frequencies. Several numerical simulations with a large amount of noisy data are performed in order to support our investigation.
2013-01-23
PIER Letters
Vol. 37, 113-122
Near-Field Focusing in One Plane Using a Loaded Sectoral Horn Antenna
Sebastien Clauzier , Stephane Avrillon , Laurent Le Coq , Mohamed Himdi , Franck Colombel and Erwan Rochefort
A near-field focused antenna used as a feed for linear array is presented in this paper. This antenna is an H-plane sectoral horn with a biconvex dielectric lens placed in its aperture. This antenna focuses the beam in one plane (H-plane) to illuminate a linear array with a small width and provide a large aperture on the other plan to illuminate the length of the array. The simulated field distribution on the array is found to be in good agreement with the measurement of a prototype at 9.41 GHz.
2013-01-23
PIER C
Vol. 36, 233-247
A Novel Microstrip Dual-Band Bandpass Filter Using Dual-Mode Square Patch Resonators
Kenneth Siok Kiam Yeo and Augustine O. Nwajana
Dual-mode square patch resonator is well known in the design of a single band quasi-elliptic bandpass filter response. Here, the dual-mode square patch resonator is employed to achieve a dualband bandpass filter. A 6 pole dual-band bandpass filter response with 3 poles at each passband will be presented. The dual-band filter also exhibits a transmission zero between the two passbands. A detailed discussion on the design procedure together with the simulation and experimental results will be presented.
2013-01-23
PIER C
Vol. 36, 223-232
New Design of Compact Shorted Annular Stacked Patch Antenna for Global Navigation Satellite System Application
Xi Li , Lin Yang and Min Wang
A new design of a compact circularly polarized shorted annular stacked patch antenna has been introduced for Global Navigation Satellite System (GNSS) in this paper. The wideband characteristic is achieved by employing L-probe coupled feeding structure. The antenna is fed by four-output-ports strip line feeding network composed of three normal Wilkinson power dividers. As a result, the designed antenna has an effective bandwidth of 94.3% from 0.7 GHz to 1.95 GHz for VSWR< 2, and 57.1% 3-dB axial ratio bandwidth from 1.0 GHz to 1.8 GHz, respectively. The designed antenna has a compact size of 100 mm×100 mm×13 mm. The final antenna provides very good circularly polarized radiation for GNSS including GPS, GLONASS, Galileo and Compass.
2013-01-23
PIER C
Vol. 36, 207-221
A Novel Half Hemispherical Dielectric Resonator Antenna with Array of Slots for Wideband Applications
Biswajeet Mukherjee , Pragati Patel , Gopi Shrikanth Reddy and Jayanta Mukherjee
A novel half Hemispherical Dielectric Resonator Antenna (HDRA) with an array of slots has been designed. The dielectric material used is Rogers TMM10, which is a ceramic thermoset polymer composite material having a dielectric constant of εr = 9.2. Periodic holes lower down the Q factor of the antenna and hence enhance the impedance bandwidth. The measured value of the 10 dB bandwidth is close to 1 GHz (~17.74%). The mode investigated is a TM101 like mode. Further, the effect of increasing the probe length on the resonance and the radiation pattern is also studied. As the probe length is increased, a shift in the resonant frequency is observed and the Dielectric Resonator Antenna (DRA) behaves as a monopole antenna loaded with the DRA. The experimental results confirm that a wide bandwidth of 1.3 GHz (~29%) with a high gain of 7.2 dBi can be obtained. The radiation pattern of such an antenna is directive in nature.
2013-01-23
PIER C
Vol. 36, 195-205
60 GHz Wireless Links for Hdtv: Channel Characterization and Error Performance Evaluation
Andreas G. Siamarou , Panagiotis Theofilakos and Athanasios G. Kanatas
This paper presents results from an indoor LOS channel measurement campaign at the 60 GHz band. The results include the Ricean K-factor and time dispersion/frequency selectivity, which dominate the data-rate and error-performance limitations of the channel. Finally, three clusters are identified and the well known Saleh-Valenzuela model is used to statistically describe the interarrival times and the power decay of clusters and multipath components in the clusters.
2013-01-23
PIER M
Vol. 28, 201-211
Multiconductor Reduction Method for Modeling Crosstalk of Complex Cable Bundles in the Vicinity of a 60 Degree Corner
Jian Yan , Zhuo Li , Liang Liang Liu and Chang Qing Gu
This paper presents a multiconductor reduction method for modeling electromagnetic crosstalk of complex cable bundles in the vicinity of a 60 degree corner. Based on the image theory and wide separation assumption, the per-unit-length parameters of the cable bundle can be obtained analytically. A modified six-step procedure is established to define the electrical and geometrical characteristics of the reduced cable bundle model compared with the original equivalent cable bundle method (ECBM). Numerical simulations are performed to demonstrate the viability and effectiveness of the method. This work can find wide applications in real environments.
2013-01-23
PIER
Vol. 136, 595-606
A Novel Dual Mode Substrate Integrated Waveguide Filter with Mixed Source-Load Coupling (Mslc)
Ziqiang Xu , Yu Shi , Congyu Xu and Peng Wang
A novel single-cavity dual mode substrate integrated waveguide (SIW) filter with mixed source-load coupling (MSLC) is presented. By using an interdigital slot-line (ISL) to introduce mixed coupling between source and load, the proposed filter with only one cavity could have three transmission zeros which can be controlled flexibly. Under the circumstances, the filter exhibits better frequency selectivity in comparison with conventional dual mode SIW filters. An experimental filter with a center frequency of 10 GHz and a 3 dB fractional bandwidth of 6.0% is designed, fabricated, and measured to validate the proposed structure. Measured results are provided to show good performance and in agreement with the simulated ones.
2013-01-23
PIER
Vol. 136, 579-594
A Family of Ultra-Thin, Polarization-Insensitive, Multi-Band, Highly Absorbing Metamaterial Structures
Theofano M. Kollatou , Alexandros I. Dimitriadis , Stylianos Assimonis , Nikolaos V. Kantartzis and Christos S. Antonopoulos
The systematic design of size-confined, polarization-independent metamaterial absorbers that operate in the microwave regime is presented in this paper. The novel unit cell is additionally implemented to create efficient multi-band and broadband structures by exploiting the scalability property of metamaterials. Numerical simulations along with experimental results from fabricated prototypes verify the highly absorptive performance of the devices, so developed. Moreover, a detailed qualitative and quantitative analysis is provided in order to attain a more intuitive and sound physical interpretation of the underlying absorption mechanism. The assets of the proposed concept, applied to the design of different patterns, appear to be potentially instructive for various EMI/EMC configurations.
2013-01-23
PIER
Vol. 136, 561-578
Design and Analysis of Multichannel Transmission Filter Based on the Single-Negative Photonic Crystal
Chien-Jang Wu , Min-Hung Lee and Jun-Zhe Jian
In this work, the multiple filtering phenomenon in a photonic crystal made of single-negative (SNG) materials is investigated. We consider a finite photonic crystal (AB)N immersed in air, in which A, B are epsilon-negative (ENG) and mu-negative (MNG) materials, respectively, and N is the stack number. It is found that such a photonic crystal can function as a multichannel transmission filter with a channel number equal to N-1. The required condition is that the thickness of MNG layer must be larger than that of ENG layer when magnetic plasma frequency is greater than electric plasma frequency. The channel frequencies can be red-shifted as the thickness of MNG layer decreases. The channel positions can be tuned by the incidence angle for both TE and TM polarizations. That is, the peak frequency is blue-shifted when the angle of incidence increases. Additionally, the influence of the static permeability of ENG medium and permittivity of MNG medium is also illustrated. The proposed structure can thus be used to design as a tunable multichannel filter which is of technical use in signal processing.
2013-01-23
PIER
Vol. 136, 543-559
Analysis of Transient Electromagnetic Scattering Using Time Domain Fast Dipole Method
Ji Ding , Chang Qing Gu , Zhuo Li and Zhenyi Niu
In this paper, a new time domain fast dipole method (TDFDM) is proposed for solving time-domain magnetic field integral equations. The proposed scheme is the extension of the frequency domain fast dipole method (FDM) to the time domain. The principle is based on the Taylor series expansion of far fields. The computational complexity of TD-FDM scales as O(Ns3/2Nt) as opposed to O(Ns2Nt ) for marching-on in-time (MOT) method. Here, Ns is the number of spatial basis functions and Nt is the number of the time steps. Numerical results about the electromagnetic scattering from perfect electric conductor (PEC) objects are given to demonstrate the validity and efficiency of the proposed scheme.
2013-01-23
PIER
Vol. 136, 523-542
Range Alignment and Motion Compensation for Missile-Borne Frequency Stepped Chirp Radar
Bo Liu and Wenge Chang
One of the difficulties for frequency stepped chirp radar (FSCR) is to resolve the range-Doppler coupling due to relative motion between the radar and the target. Motion compensation is usually adopted to solve the problem in realizing synthetic high range resolution profile (HRRP) for a moving target. For missile-borne FSCR, the range migration of target echo during a coherent processing interval, which is resulted from the high speed motion of missile, is serious and will affect target detection and synthetic high range resolution profile. Therefore, range migration correction and motion compensation are very important for missile-borne FSCR signal processing. In the paper, with the background of terminal guidance anti-ship FSCR seeker, the range alignment is accomplished in frequency domain during the process of real-time digital pulse compression. Then an effective velocity estimation algorithm based on the waveform entropy of the Doppler amplitude spectrum of target echoes is addressed and the velocity estimation accuracy is derived. Finally, the simulation indicates that the new method can estimate the radial velocity accurately and reconstruct the distorted HRRP successfully. In addition, the method has good anti-noise performance and works in the scenario of multi-target with different velocities as well.
2013-01-22
PIER B
Vol. 48, 77-98
Dispersion Diagram Analysis of Arrays of Multishell Multimaterial Nanospheres
Masoud Rostami , Davood Ansari Oghol Beig and Hossein Mosallaei
In this paper, the characteristics of electromagnetic waves supported by three dimensional (3-D) periodic arrays of multilayer multimaterial spheres are theoretically investigated. The spherical particles have the potential to offer electric and magnetic dipole modes, where their novel arrangements engineer the desired metamaterial performance. Multilayer spheres are designed for controlling both electric and magnetic Mie scattering resonances around the same spectrum. A full wave spherical modal formulation is applied to express the electromagnetic fields in terms of the electric and magnetic multipole modes. Imposing boundary conditions will determine the required equations for obtaining dispersion characteristics ωa/2πc-ka/2π. A metamaterial constructed from unit-cells of multilayer multimaterial sphere is created. It is demonstrated such compositions can exhibit negative-slope dispersion diagram metamaterial properties in frequency spectrums of interest, where both electric and magnetic Mie scattering resonances occur. Different coatings such as silver, gold, indium-tin-oxide (ITO), Al:ZnO, (AZO) and Ga:ZnO (GZO) are used and the operating range and the losses of the resulting metamaterials are compared. It is presented that by adding the third layer to the core-shell structure, due to increased degrees of freedom, the metamaterials operation range will be tunable to the desired frequency.
2013-01-22
PIER M
Vol. 28, 185-199
Semiconductor Quantum Dot Lasers as Pulse Sources for High Bit Rate Data Transmission
Mohamed Nady Abdul Aleem , Khalid Fawzy Ahmed Hussein and Abd-El-Hadi Ammar
Multi Populations Rate Equations (MPREs) model is used to analyze the dynamic characteristics of the InAs/InP (113) B self assembled quantum dot laser. The resulting system of differentaial equations is solved using fourth-order Runge-Kutta method taking into consideration homogeneous and inhomogeneous broadening of optical gain. The effects of the injected current, Full Width at Half Maximum (FWHM) of the homogenous broadening, and initial relaxation time (phonon bottleneck) on the rise time, fall time, and hence the maximum allowable bit rate of the optical signal are investigated.
2013-01-22
PIER
Vol. 136, 509-521
Second-Order Formulation for the Quasi-Static Field from a Vertical Electric Dipole on a Lossy Half-Space
Mauro Parise
Improved quasi-static expressions are derived for the time-harmonic electromagnetic (EM) field components excited by a vertical electric dipole (VED) lying on the surface of a flat and homogeneous lossy half-space. An analytical procedure is developed that allows to evaluate the complete integral representations for the fields, once the non-oscillating part of the integrand in the expression of the magnetic vector potential is replaced with its quadratic approximation for small values of the free-space wavenumber. The advantage of the proposed second-order quasi-static approximations resides in the possibility of relaxing the assumption of highly conducting half-space. This makes it possible to overcome the limitations implied by the previously published zeroth-order formulation, whose validity is restricted to extremely low frequencies for poorly conducting media. Numerical results are presented to illustrate the reduction of relative percent error arising from using the improved quasi-static field expressions.