Vol. 136
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-23
Range Alignment and Motion Compensation for Missile-Borne Frequency Stepped Chirp Radar
By
Progress In Electromagnetics Research, Vol. 136, 523-542, 2013
Abstract
One of the difficulties for frequency stepped chirp radar (FSCR) is to resolve the range-Doppler coupling due to relative motion between the radar and the target. Motion compensation is usually adopted to solve the problem in realizing synthetic high range resolution profile (HRRP) for a moving target. For missile-borne FSCR, the range migration of target echo during a coherent processing interval, which is resulted from the high speed motion of missile, is serious and will affect target detection and synthetic high range resolution profile. Therefore, range migration correction and motion compensation are very important for missile-borne FSCR signal processing. In the paper, with the background of terminal guidance anti-ship FSCR seeker, the range alignment is accomplished in frequency domain during the process of real-time digital pulse compression. Then an effective velocity estimation algorithm based on the waveform entropy of the Doppler amplitude spectrum of target echoes is addressed and the velocity estimation accuracy is derived. Finally, the simulation indicates that the new method can estimate the radial velocity accurately and reconstruct the distorted HRRP successfully. In addition, the method has good anti-noise performance and works in the scenario of multi-target with different velocities as well.
Citation
Bo Liu Wenge Chang , "Range Alignment and Motion Compensation for Missile-Borne Frequency Stepped Chirp Radar," Progress In Electromagnetics Research, Vol. 136, 523-542, 2013.
doi:10.2528/PIER12110809
http://www.jpier.org/PIER/pier.php?paper=12110809
References

1. Wehner, D. R., High-resolution Radar, Chapter 4-Chapter 5, Artech House, Boston, 1995.

2. Xu, H.-Y., H. Zhang, K. Lu, X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

3. Park, S.-H., H.-T. Kim, and K.-T. Kim, "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.
doi:10.2528/PIER08082107

4. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301

5. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306

6. Zhai, W. and Y. Zhang, "Application of super-SVA to stepped chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 71-82, 2011.

7. Liu, B. and W. Chang, "A novel range-spread target detection approach for frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012.

8. Hao, C., F. Bandiera, J. Yang, D. Orlando, S. Yan, and C. Hou, "Adaptive detection of multiple point-like targets under conic constraints ," Progress In Electromagnetics Research, Vol. 129, 231-250, 2012.

9. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis ," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

10. Fu, J.-S. and W.-L. Yang, "KFD-based multiclass synthetical discriminant analysis for radar HRRP recognition," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 169-178, 2012.
doi:10.1163/156939312800030947

11. Zhou, D., X. Shen, and Y. Liu, "Nonlinear subprofile space for radar HRRP recognition," Progress In Electromagnetics Research Letters, Vol. 33, 91-100, 2012.

12. Zhu, F., Q. Zhang, Q. Lei, and Y. Luo, "Reconstruction of moving target's HRRP using sparse frequency-stepped chirp signal," IEEE Sensors Journal, Vol. 11, No. 10, 2327-1334, 2011.
doi:10.1109/JSEN.2011.2136375

13. Chen, H.-Y., Y.-X. Liu, W.-D. Jiang, and G.-R. Guo, "A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms," IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 3, 406-409, 2006.
doi:10.1109/LGRS.2006.873874

14. Li, G., H. D. Meng, X. G. Xia, and Y. N. Peng, "Range and velocity estimation of moving targets using multiple stepped-frequency pulse trains," Sensors, Vol. 8, 1343-1350, 2008.
doi:10.3390/s8021343

15. Liu, Y. M., H. D. Meng, H. Zhang, and X. Q. Wang, "Motion compensation of moving targets for high range resolution stepped-frequency radar," Sensors, Vol. 8, 3429-3437, 2008.
doi:10.3390/s8053429

16. Park, S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.

17. Kirkland, D. M., "An alternative range migration correction algorithm for focusing moving targets," Progress In Electromagnetics Research, Vol. 131, 227-241, 2012.

18. Tao, R., N. Zhang, and Y. Wang, "Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar," IET Radar Sonar and Navigation, Vol. 5, No. 1, 12-22, 2011.
doi:10.1049/iet-rsn.2009.0265

19. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proceedings Radar, Sonar and Navigation, Vol. 149, No. 6, 297-309, 2002.
doi:10.1049/ip-rsn:20020432

20. Sun, H. X., Z. Liu, and Y. H. Cao, "Estimation of a high-velocity target's motion parameters for a modulated frequency stepped radar," Journal of Xidian University, Vol. 38, No. 1, 136-141, 2011.

21. Moore, T. A., et al., Use of the GPS aided inertial navigation system in the navy standard missile for the BMDO/Navy LEAP technology demonstration program, Proceedings of ION GPS-95, Palm Springs, CA, September 12-15, 1995.

22. Ma, Y.-B., Velocity compensation in stepped frequency radar, Master's Thesis, Naval Postgraduate School, California, USA, 1995.

23. Calvo-Gallego, J. and F. Pérez-Martínez, "Simple traffic surveillance system based on range-Doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809

24. Stimson, G. W., Introduction to Airborne Radar, 2nd Ed., Ch. 15, SciTech Publishing, Inc., Raleigh, 1998.

25. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

26. Martyushev, L. M. and V. D. Seleznev, "Maximum entropy production principle in physics, chemistry and biology," Physics Reports, Vol. 426, 1-10, 2006.
doi:10.1016/j.physrep.2005.12.001

27. Xi, L., "Auto focusing of ISAR images based on entropy minimization," IEEE Trans. on Aerospace Electron. Syst., Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442

28. Jing, L., L. X. Guo, and W.Wu, "Application of waveform entropy method for motion compensation to MMW costas frequency hopped radar ," Journal of Infrared and Millimeter Wave, Vol. 22, No. 4, 303-306, 2003.

29. Xu, S., P. Shui, and X. Yan, "CFAR detection of range-spread target in white Gaussian noise using waveform entropy," Electronics Letters, Vol. 46, No. 9, 647-649, 2010.
doi:10.1049/el.2010.3329

30. Zhang, Z.-B., X.-Y. Du, and W.-D. Hu, "Waveform entropy-based target detection in HRRPs," Aeronautical Computing Technique, Vol. 37, No. 6, 51-54, 2007.

31. Zhang, J.-P., Z.-S. Wu, Y.-S. Zhang, and B. Wang, "Evaporation duct retrieval using changes in radar sea clutter power versus receiving height," Progress In Electromagnetics Research, Vol. 126, 555-571, 2012.
doi:10.2528/PIER11121307

32. Wu, Z.-S., J.-P. Zhang, L.-X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803

33. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

34. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401