Vol. 174
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Metamaterials, Metasurfaces, and Plasmonics
Featured Article
Vol. 174, 89-106, 2022
download: 1213
Bessel Beam Generated by the Zero-Index Metalens
Fusheng Deng , Zhiwei Guo , Mina Ren , Xiaoqiang Su , Lijuan Dong , Yan Hong Liu , Yun Long Shi and Hong Chen
Bessel beam is an important propagation-invariant optical field. The size and shape of its central spot remain unchanged in the long-distance transmission process, which has a wide application prospect. In this paper, we find that zero-index media (ZIM) metalen can be designed to realize the unique Bessel beam. On the one hand, based on the metal-dielectric multilayered structure with sub-wavelength unit cells, the anisotropic epsilon-near-zero media (ENZ) metalen is proposed for generating the robust Bessel beam, which is immune to the defects placed in the transmission path or the inside of the structure. The ZIM metalens uncover that ENZ media provide a new way to generate Bessel beams beyond the conventional convex prisms. On the other hand, with the help of the uniform field distribution of ZIM, enhanced (multi-channel) Bessel beams based on multiple point sources (exit surfaces) are studied in the isotropic ENZ metalens. In addition, the Bessel beam generated by the ZIM metalen has also been extend to the epsilon-mu-near zero metamaterial realized by two dimensional photonic crystals. Our results not only provide a new way to generate Bessel beam based on the ZIM metalens, but also may enable their use in some optical applications, such as in fluorescence microscopy imaging, particle trapping, and wave-front tailoring.
Vol. 174, 55-73, 2022
download: 2271
A Review of Multifunctional Optical Gap-Surface Plasmon Metasurfaces
Fei Ding
Gap-surface plasmon (GSP) metasurfaces that consist of metallic resonators, a middle dielectric spacer, and a back metallic reflector have become an emerging research area due to their excellent properties, such as ease of fabrication, high efficiency, and unprecedented capabilities of controlling reflected fields. In this concise review, we introduce our efforts in exploring the physical principles and fascinating applications of multifunctional GSP metasurfaces in the optical range. Starting with a typical GSP meta-atom, we present the concept and mechanism of simultaneous and independent phase and polarization control. We then overview some typical applications of GSP metasurfaces, including beam-steering, surface plasmon polariton coupling, metalenses, meta-waveplates, and dynamical metasurfaces. The review is ended with a short perspective on future developments in this area.
Photonics and Modern Optics
Vol. 174, 107-114, 2022
download: 395
A Simple Graphic Method for Analyzing the Polarization State of an Optical System with a Fixed Polarizer and a Rotating Elliptical Retarder
Nan Wang and Sailing He
The trajectory of the polarization state of a monochromatic beam passing through a fixed linear polarizer and a rotating elliptical retarder on the Poincaré sphere is found to be a three-dimensional 8-shaped contour, which is determined as the line of intersection of a right-circular cylinder with the Poincaré sphere. The cylinder is parallel to the S3 axis, and the projection of the contour on the S1S2 plane is a circle whose center and radius are determined. A method of projecting the three-dimensional geometric relationships to the two-dimensional S1S2 plane to locate the position of the polarization state of the emerging beam on the Poincaré sphere for a given azimuth of the elliptical retarder is presented, and applied to solve a problem of polarization optics. The proposed graphic method substantially simplifies the polarization state analysis involving elliptical retarders.
Vol. 174, 75-88, 2022
download: 448
Deep Insight into Channel Engineering of Sub-3 nm -Node P-Type Nanosheet Transistors with a Quantum Transport Model
Afshan Khaliq , Shuo Zhang , Jun Z. Huang , Kai Kang and Wen-Yan Yin
Based on a self-consistent Schrodinger-Poisson solver and top-of-the-barrier model, a quantum transport simulator of p-type gate-all-around nanosheet FET is developed. The effects of material (Si/Ge), stress, crystallographic orientation, and cross-sectional size are deeply explored by numerical simulations for the device performance at the sub-3 nm technology node. A strain-dependent 6-band k.p Hamiltonian is incorporated into the model for a more accurate calculation of E-k dispersion in the strain-perturbed valence band structure, where the curvature, energy shift, and splitting of subbands are investigated in detail for hole transport properties. Further, the effect of channel engineering is comprehensively analyzed, by evaluating density-of-states effective mass, average injection velocity, mobility, current density distributions, and the current-voltage characteristics. An effective performance improvement from 2GPa compressive stress is obtained in [100]/(001) and [110]/(001) channels, with a 7% enhancement of ON-current in Ge nanosheet FETs. While a wider channel cross-section improves the drive current by increasing the effective channel width, a smaller cross-sectional width yields an average increase up to 29% in the ON-state injection velocity due to stronger quantum confinement.
Vol. 174, 33-42, 2022
download: 510
TDFA-Band Silicon Optical Variable Attenuator
Maoliang Wei , Hui Ma , Chunlei Sun , Chuyu Zhong , Yuting Ye , Peng Zhang , Ruonan Liu , Junying Li , Lan Li , Bo Tang and Hongtao Lin
TDFA-band (2-μm waveband) has been considered as a promising optical window for the next generation of optical communication and computing. Absorption modulation, one of the fundamental reconfigurable manipulations, is essential for large-scale photonic integrated circuits. However, few efforts have been involved in exploring absorption modulation at TDFA-band. In this work, variable optical attenuators (VOAs) for TDFA-band wavelengths were designed and fabricated based on a silicon-on-insulator (SOI) platform. By embedding a short PIN junction length of 200 μm into the waveguide, the fabricated VOA exhibits a high modulation depth of 40.49 dB at 2.2 V and has a fast response time (10 ns) induced by the plasma dispersion effect. Combining the Fabry-Perot cavity effect and plasma dispersion effect of silicon, the attenuator could achieve a maximum attenuation of more than 50 dB. These results promote the 2-μm waveband silicon photonic integration and are expected to the future use of photonic attenuators in crosstalk suppression, optical modulation, and optical channel equalization.
Vol. 174, 23-32, 2022
download: 446
Squeezing of Hyperbolic Polaritonic Rays in Cylindrical Lamellar Structures
Lu Song , Lian Shen and Huaping Wang
We propose the squeezing of hyperbolic polaritonic rays in cylindrical lamellar structures with hyperbolic dispersion. This efficient design is presented through conformal mapping transformation by combining with circular effective-medium theory (CEMT) that is adopted to predict the optical response of concentric cylindrical binary metal-dielectric layers. The volume-confined hyperbolic polaritons supported in these cylindrical lamellar structures could be strongly squeezed when they propagate toward the origin since their wavelength shortens, and velocity decreases. To demonstrate the importance of using CEMT for engineering highly-squeezed hyperbolic polaritons, both CEMT and planar effective-medium theory (PEMT) are utilized to design the cylindrical lamellar structures. It is shown that the PEMT-based design is unable to achieve hyperbolic polaritons squeezing even with a sufficiently large number of metal-dielectric binary layers. Remarkably, this study opens new opportunities for hyperbolic polaritons squeezing, and the findings are promising for propelling nanophotonics technologies and research endeavours.
Quantum Electromagnetics and Quantum Photonics
Vol. 174, 43-53, 2022
download: 461
Comparison of Correlation Performance for Various Measurement Schemes in Quantum Bipartite Radar and Communication Systems
Rory A. Bowell , Matthew J. Brandsema , Ram M. Narayanan , Stephen W. Howell and Jonathan M. Dilger
Bipartite systems have become popular in emerging quantum radar and quantum communication systems. This paper analyzes the various correlation coefficients for different types of quantum radar measurement schemes, such as: (i) immediate detection of the idler photon events to be used in post-processing correlation with the signal photon events, (ii) immediate detection of the idler electric field to be used in post-processing correlation with the signal electric field, (iii) immediate detection of the idler quadratures to be used in post-processing correlation with the signal quadratures, and (iv) conventional analog correlation method of the optical parametric amplifier. The showcased results compare the performance of these different methodologies for various environmental scenarios. This work is important at developing the fundamentals behind quantum technologies that require covariance measurements and will permit more accurate selection of the appropriate measurement styles for individual systems.
Regular Papers
Vol. 174, 127-141, 2022
download: 549
A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition (Invited)
Federico Succetti , Antonello Rosato , Francesco Di Luzio , Andrea Ceschini and Massimo Panella
Despite recent advances, fast and reliable Human Activity Recognition in confined space is still an open problem related to many real-world applications, especially in health and biomedical monitoring. With the ubiquitous presence of Wi-Fi networks, the activity recognition and classification problems can be solved by leveraging some characteristics of the Channel State Information of the 802.11 standard. Given the well-documented advantages of Deep Learning algorithms in solving complex pattern recognition problems, many solutions in the Human Activity Recognition domain are taking advantage of those models. To improve the time and precision of activity classification of time-series data stemming from Channel State Information, we propose herein a fast deep neural model encompassing concepts not only from state-of-the-art recurrent neural networks, but also using convolutional operators with added randomization. Results from real data in an experimental environment show promising results.
Vol. 174, 115-125, 2022
download: 277
Aging Monitoring of Bond Wires Based on EMR Signal Spectrum Characteristics for IGBT Module
Zhihui Ren , Ming-Xing Du , Jinliang Yin , Chao Dong and Ziwei Ouyang
Bond wires aging is one of the most common failure modes of insulated gate bipolar transistor (IGBT) module. Real-time monitoring of bond wires status is an important guarantee for the stable operation of power electronics system. In this paper, a method of monitoring the aging state of bond wires in IGBT module based on the spectrum characteristics of electromagnetic radiation (EMR) signature is proposed. Firstly, the turn-off process of IGBT module is analyzed, and the behavior model of IGBT module in the stage of rapid current change is established, which shows that EMR interference in buck converter mainly occurs during the turn-off process of IGBT module. Secondly, the relationship between the aging degree of bond wires and differential mode (DM) interference signal is deduced. Thirdly, the IGBT module is equivalent to a magnetic dipole, which proves that the change of DM interference signal will cause the change of EMR signal, thus demonstrating the feasibility of using EMR signal to monitor bond wires aging. Finally, a buck converter composed of IGBT module is used as the equipment to be tested. The EMR signal is extracted by the near-field probe, and the EMR signal spectrum is used to monitor the aging degree of the bond wires. The experimental results show that with the deepening of the aging degree of bond wires, the spectrum amplitude of EMR signal increases.
Aging Monitoring of Bond Wires Based on EMR Signal Spectrum Characteristics for IGBT Module
Vol. 174, 1-22, 2022
download: 710
On the Low Speed Limits of Lorentz's Transformation - How Relativistic Effects Retain OR Vanish in Electromagnetism
Hao Chen , Wei E. I. Sha , Xi Dai and Yue Yu
This article contains a digest of the theory of electromagnetism and a review of the transformation between inertial frames, especially under low speed limits. The covariant nature of the Maxwell's equations is explained using the conventional language. We show that even under low speed limits, the relativistic effects should not be neglected to get a self-consistent theory of the electromagnetic fields, unless the intrinsic dynamics of these fields has been omitted completely. The quasi-static limits, where the relativistic effects can be partly neglected are also reviewed, to clarify some common misunderstandings and imprecise use of the theory in presence of moving media and other related situations. The discussions presented in this paper provide a clear view of why classical electromagnetic theory is relativistic in its essence.