Vol. 174
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-06-20
A Simple Graphic Method for Analyzing the Polarization State of an Optical System with a Fixed Polarizer and a Rotating Elliptical Retarder
By
Progress In Electromagnetics Research, Vol. 174, 107-114, 2022
Abstract
The trajectory of the polarization state of a monochromatic beam passing through a fixed linear polarizer and a rotating elliptical retarder on the Poincaré sphere is found to be a three-dimensional 8-shaped contour, which is determined as the line of intersection of a right-circular cylinder with the Poincaré sphere. The cylinder is parallel to the S3 axis, and the projection of the contour on the S1S2 plane is a circle whose center and radius are determined. A method of projecting the three-dimensional geometric relationships to the two-dimensional S1S2 plane to locate the position of the polarization state of the emerging beam on the Poincaré sphere for a given azimuth of the elliptical retarder is presented, and applied to solve a problem of polarization optics. The proposed graphic method substantially simplifies the polarization state analysis involving elliptical retarders.
Citation
Nan Wang Sailing He , "A Simple Graphic Method for Analyzing the Polarization State of an Optical System with a Fixed Polarizer and a Rotating Elliptical Retarder," Progress In Electromagnetics Research, Vol. 174, 107-114, 2022.
doi:10.2528/PIER22033102
http://www.jpier.org/PIER/pier.php?paper=22033102
References

1. Chipman, R. A., W.-S. T. Lam, and G. Young, Polarized Light and Optical Systems, CRC Press, 2018.
doi:10.1201/9781351129121

2. Goldstein, D. H., Polarized Light, CRC Press, 2017.
doi:10.1201/b10436

3. Gil, J. J. and R. Ossikovski, Polarized Light and the Mueller Matrix Approach, CRC Press, 2017.

4. El-Hosseiny, F., "Methods for determining the optical parameters of elliptic retarders," J. Opt. Soc. Am., Vol. 65, 1279-1282, 1975.
doi:10.1364/JOSA.65.001279

5. Pancharatnam, S., "Achromatic combinations of birefringent plates," Proceedings of the Indian Academy of Sciences --- Section A, 137-144, Springer, 1 1955.

6. Gottlieb, D. and O. Arteaga, "Optimal elliptical retarder in rotating compensator imaging polarimetry," Opt. Lett., Vol. 46, 3139-3142, 2021.
doi:10.1364/OL.430266

7. Lin, P.-L., C.-Y. Han, and Y.-F. Chao, "Three-intensity measurement technique and its measurement in elliptical retarder," Opt. Commun., Vol. 281, 3403-3406, 2008.
doi:10.1016/j.optcom.2008.02.042

8. Eugui, P., D. J. Harper, A. Lichtenegger, M. Augustin, C. W. Merkle, A. Woehrer, C. K. Hitzenberger, and B. Baumann, "Polarization-sensitive imaging with simultaneous bright-and dark-field optical coherence tomography," Opt. Lett., Vol. 44, 4040-4043, 2019.
doi:10.1364/OL.44.004040

9. Chung, D., H. S. Park, F. Rotermund, and B. Y. Kim, "Measurement of bending-induced birefringence in a hollow-core photonic crystal fiber," Opt. Lett., 5872-5875, 2019.
doi:10.1364/OL.44.005872

10. Vella, A. and M. A. Alonso, "Poincaré sphere representation for spatially varying birefringence," Opt. Lett., Vol. 43, 379-382, 2018.
doi:10.1364/OL.43.000379

11. Yu, C.-J., "Fully variable elliptical phase retarder composed of two linear phase retarders," Rev. Sci. Instrum., Vol. 87, 035106, 2016.
doi:10.1063/1.4943223

12. Rajagopalan, S. and S. Ramaseshan, "Rotating elliptic analysers for the automatic analysis of polarised light --- Part I," Proceedings of the Indian Academy of Sciences --- Section A, 297-312, Springer, 1964.
doi:10.1007/BF03047059

13. Azzam, R., T. Bundy, and N. Bashara, "The fixed-polarizer nulling scheme in generalized ellipsometry," Opt. Commun., Vol. 7, 110-115, 1973.
doi:10.1016/0030-4018(73)90079-5

14. Sabatke, D., M. Descour, E. Dereniak, W. Sweatt, S. Kemme, and G. Phipps, "Optimization of retardance for a complete Stokes polarimeter," Opt. Lett., Vol. 25, 802-804, 2000.
doi:10.1364/OL.25.000802

15. Azzam, R., "Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system," J. Opt. Soc. Am. A, Vol. 17, 2105-2107, 2000.
doi:10.1364/JOSAA.17.002105

16. Salazar-Ariza, K. and R. Torres, "Trajectories on the Poincaré sphere of polarization states of a beam passing through a rotating linear retarder," J. Opt. Soc. Am. A, Vol. 35, 65-72, 2018.
doi:10.1364/JOSAA.35.000065