Vol. 143
Latest Volume
All Volumes
PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-02-10
PIER
Vol. 143, 821-848, 2013
download: 154
Developing One-Dimensional Electronically Tunable Microwave and Millimeter-Wave Components and Devices Towards Two-Dimensional Electromagnetically Reconfigurable Platform (Invited Paper)
Sulav Adhikari Ke Wu
An overview of state-of-the-art frequency tunable technologies in the realization of tunable radio frequency (RF) and microwave tunable circuits is presented with focus on filter designs. Those enabling techniques and materials include semiconductors, micro-electro-mechanical systems (MEMS), ferroelectric and ferromagnetic materials. Various performance indicators of one-dimensional tunable filters are addressed in terms of tunability, losses, signal integrity and other aspects. Fundamental limitations of the classical onedimensional tuning method are discussed, which makes use of only one type of tunable elements such as either electric or magnetic tuning/controlling of circuit parameters. Requirements of simultaneous electric and magnetic two-dimensional tuning techniques are highlighted for achieving an unprecedented and advantageous wider modal tuning. It is believed that this emerging scheme will lead its way in the realization of future highly efficient and tunable RF and microwave components and devices.
DEVELOPING ONE-DIMENSIONAL ELECTRONICALLY TUNABLE MICROWAVE AND MILLIMETER-WAVE COMPONENTS AND DEVICES TOWARDS TWO-DIMENSIONAL ELECTROMAGNETICALLY RECONFIGURABLE PLATFORM (Invited Paper)
2014-01-27
PIER
Vol. 143, 773-819, 2013
download: 332
Silicon Multimode Photonic Integrated Devices for on-Chip Mode-Division-Multiplexed Optical Interconnects (Invited Review)
Daoxin Dai Jian Wang Sailing He
In order to enhance the capacity of an optical-interconnect link with a single wavelength carrier, multimode spatial-division multiplexing (SDM) technology has been attracted lots of attention. For a mode-multiplexed optical-interconnect link, the functionality elements become quite different from the conventional ones because multiple modes are involved. In this paper we give a review and discussion on multimode photonic integrated devices for mode-multiplexed optical-interconnect. First light propagation and mode conversion in tapered waveguides as well as bent waveguides is discussed. Recent progresses on mode converter-(de)multiplexers are then reviewed. The requirement of some functionality devices used for mode-multiplexed optical-interconnects is also discussed. In particular, the fabrication tolerance is analyzed in detail for our hybrid demultiplexer, which enables mode-/polarization-division-(de)multiplexing simultaneously.
SILICON MULTIMODE PHOTONIC INTEGRATED DEVICES FOR ON-CHIP MODE-DIVISION-MULTIPLEXED OPTICAL INTERCONNECTS (Invited Review)
2014-01-25
PIER
Vol. 143, 761-771, 2013
download: 198
Localized Monochromatic and Pulsed Waves in Hyperbolic Metamaterials (Invited Paper)
Ioannis Besieris Amr M. Shaarawi
A special class of metamaterials known as hyperbolic media allow the propagation of large classes of novel monochromatic and pulsed localized waves. Illustrative explicit solutions are given of ``accelerating'' oblique Airy beams, as well as nondiffracting and nondispersive spatiotemporally localized ``all-speed'' X-shaped and MacKinnon-type waves.
LOCALIZED MONOCHROMATIC AND PULSED WAVES IN HYPERBOLIC METAMATERIALS (Invited Paper)
2014-01-17
PIER
Vol. 143, 745-760, 2013
download: 158
Differential Forms Inspired Discretization for Finite Element Analysis of Inhomogeneous Waveguides (Invited Paper)
Qi Dai Weng Cho Chew Li Jun Jiang
We present a differential forms inspired discretization for variational finite element analysis of inhomogeneous waveguides. The variational expression of the governing equation involves transverse fields only. The conventional discretization with edge elements yields an unsolvable generalized eigenvalue problem since one of the sparse matrix is singular. Inspired by the differential forms where the Hodge operator transforms 1-forms to 2-forms, we propose to discretize the electric and magnetic field with curl-conforming basis functions on the primal and dual grid, and discretize the magnetic flux density and electric displacement field with the divergence-conforming basis functions on the primal and dual grid, respectively. The resultant eigenvalue problem is well-conditioned and easy to solve. The proposed scheme is validated by several numerical examples.
DIFFERENTIAL FORMS INSPIRED DISCRETIZATION FOR FINITE ELEMENT ANALYSIS OF INHOMOGENEOUS WAVEGUIDES (Invited Paper)
2014-01-03
PIER
Vol. 143, 709-743, 2013
download: 149
Three-Parameter Elliptical Aperture Distributions for Sum and Difference Antenna Patterns Using Particle Swarm Optimization (Invited Paper)
Arthur Densmore Yahya Rahmat-Samii
This paper presents a unified analysis of the three-parameter aperture distributions for both sum and difference antenna patterns, suitable for communications or telemetry applications with either a stationary or tracking antenna, and with the parameters automatically determined by Particle-Swarm Optimization (PSO). These distributions can be created, for example, by reflector, phased array, or other antenna systems. The optimizations involve multiple objectives, for which Pareto efficiency concepts apply, and are accelerated by compact, analytical closed-form equations for key metrics of the distributions, including the far-field radiation pattern and detection slope of the difference pattern. The limiting cases of the threeparameter distributions are discussed and shown to generalize other distributions in the literature. A derivation of the generalized vector far fields provides the background for the distribution study and helps clarify the definition of cross-polarization in the far-field. Examples are given to show that the three-parameter (3P) distributions meet a range of system-level constraints for various applications, including a sidelobe mask for satellite ground stations and maximizing pointing error detection sensitivity while minimizing clutter from sidelobes for tracking applications. The equations for the relative angle sensitivity for the difference pattern are derived. A study of the sensitivity of the 3P parameter values is presented.
THREE-PARAMETER ELLIPTICAL APERTURE DISTRIBUTIONS FOR SUM AND DIFFERENCE ANTENNA PATTERNS USING PARTICLE SWARM OPTIMIZATION (Invited Paper)
2013-12-11
PIER
Vol. 143, 675-708, 2013
download: 179
Microwave Imaging Within the Interval Analysis Framework
Paolo Rocca Matteo Carlin Luca Manica Andrea Massa
An approach based on the use of the arithmetic of intervals and Interval Analysis for the solution of inverse scattering problems is presented and assessed. By exploiting the property of the Interval Analysis to find the global minimum of a functional in a n-dimensional space, the proposed approach adopts a branch and bound process to discard the regions of the solutions space not containing the global solution, while keeping those where a feasible solution is expected until a suitable converge criterion is reached. A representative set of results concerned with the reconstruction of circular dielectric objects within the first-order Born approximation are reported and discussed to show potentialities and current limitations of the proposed approach.
MICROWAVE IMAGING WITHIN THE INTERVAL ANALYSIS FRAMEWORK
2013-12-10
PIER
Vol. 143, 641-673, 2013
download: 174
Minimum Q for Lossy and Lossless Electrically Small Dipole Antennas (Invited Paper)
Arthur Yaghjian Mats Gustafsson Lars Jonsson
General expressions for the quality factor (Q) of antennas are minimized to obtain lower-bound formulas for the Q of electrically small, lossy or lossless, combined electric and magnetic dipole antennas confined to an arbitrarily shaped volume. The lower-bound formulas for Q are derived for the dipole antennas excited by both electric and magnetic surface currents as well as by electric surface currents alone. With either excitation, separate formulas are found for the dipole antennas containing only lossless or nondispersive-conductivity material and for the dipole antennas containing highly dispersiveconductivity material. The formulas involve the quasi-static electric and magnetic polarizabilities of the associated perfectly conducting volume of the antenna, the ratio of the powers radiated by the electric and magnetic dipoles, and the efficiency of the antenna.
MINIMUM Q FOR LOSSY AND LOSSLESS ELECTRICALLY SMALL DIPOLE ANTENNAS (Invited Paper)
2013-12-06
PIER
Vol. 143, 623-639, 2013
download: 149
Numerical Modelling of Human Body for Bluetooth Body-Worn Applications
Masood Ur-Rehman Qammer Hussain Abbasi Xiaodong Chen Zhinong Ying
The human body has got a pivotal role in portable devices operating in Body-centric Wireless Networks (BCWNs). Electromagnetic interaction between lossy human body tissues and wearable antennas degrades the system performance. Efficient deployment of such systems necessitates thorough understanding of these effects. Numerical analysis is a powerful tool that provides useful information of such scenarios fairly quicker than the actual measurements giving the user full control of the design environment. This paper investigates usefulness of numerical analysis based on the comparison of three different homogeneous models of the human body. Effectiveness of a numerical model is evaluated in terms of its resolution, computational efficiency, time consumption and accuracy of the results in software followed by experimental verifications.
NUMERICAL MODELLING OF HUMAN BODY FOR BLUETOOTH BODY-WORN APPLICATIONS
2013-12-06
PIER
Vol. 143, 605-621, 2013
download: 170
A Study of Radar Features of Wind Turbines in the HF Band
Aale Naqvi Hao Ling
Radar features of wind turbines are simulated and studied in the HF band. The features are presented in the range-Doppler plane for single as well as arrays of turbines. Doppler aliasing due to the limited pulse repetition frequency of HF radars is examined. Shadowing characteristics of arrays of turbines are simulated and analyzed. Electromagnetic modeling details including effects of thin-wire modeling, non-conducting turbine components, and the presence of a conducting ground surface are discussed.
A STUDY OF RADAR FEATURES OF WIND TURBINES IN THE HF BAND
2013-12-06
PIER
Vol. 143, 575-604, 2013
download: 129
Forward-Looking Imaging of Scanning Phased Array Radar Based on the Compressed Sensing
Xiaoyang Wen Gangyao Kuang Jiemin Hu Ronghui Zhan Jun Zhang
In this paper, a novel forward-looking imaging method based on the compressed sensing is proposed for scanning phased array radar (PAR) in order to improve the azimuth resolution,. Firstly, the echo of targets is modeled according to the principle of PAR. Then, it is analyzed why some of the former methods as multi-channel deconvolution are ineffective based on the signal model. Using a widely accepted assumption that dominant scatterers in an interesting area are sparse or compressible, an imaging algorithm based on the compressed sensing is proposed and investigated. This method obtains its high range resolution by transmitting and compressing chirp pulse signal, and improves its azimuth resolution by utilizing the compressed sensing technique. The effectiveness of the proposed method is illustrated and analyzed with simulations data.
FORWARD-LOOKING IMAGING OF SCANNING PHASED ARRAY RADAR BASED ON THE COMPRESSED SENSING
2013-12-06
PIER
Vol. 143, 559-574, 2013
download: 215
Comparative Modeling of Single-Ended through -Silicon Vias in GS and GSG Configurations Up to V-Band Frequencies
Kuan-Chung Lu Tzyy-Sheng Horng
This work presents a novel comparative modeling scheme for single-ended (SE) through-silicon vias (TSVs) in GSG and GS configurations. Physical scalable models based on the equations developed herein indicate that the use of two symmetric ground TSVs in GSG configuration relatively increases the parasitic capacitance and conductance in the silicon substrate. However, this increase in the parasitic capacitance requires that the parasitic inductance of SE TSV is reduced to maintain the same phase velocity in silicon. According to the modeling results, the GSG configuration has a larger insertion loss than that of the GS configuration because the former has a higher substrate conductance. Nevertheless, when measured using RF coaxial probes, the GSG configuration exhibits a larger measurement bandwidth than the GS configuration. Finally, with the assistance of a double-sided probing system, wideband S-parameter measurement can validate the established equivalent-circuit model of SE TSV in GSG configuration up to V-band frequencies.
COMPARATIVE MODELING OF SINGLE-ENDED THROUGH-SILICON VIAS IN GS AND GSG CONFIGURATIONS UP TO V-BAND FREQUENCIES
2013-12-06
PIER
Vol. 143, 545-558, 2013
download: 112
Tunable Metamaterials Made of Graphene-Liquid Crystal Multilayers
Amir Madani Shuomin Zhong Habib Tajalli Samad Roshan Entezar Abdolrahman Namdar Yungui Ma
The dispersion properties of an anisotropic metamaterial composed of periodic stacking of graphene-liquid crystal layers are investigated in the far-infrared region. It is represented that this structure is able to show both the elliptic and hyperbolic dispersions using the tunable properties of the graphene and liquid crystal. The switching between two dispersion phases via control of the temperature, voltage and external electric field is studied. It is shown that this switching can be used to control of the transmission and reflection at the interface of the metamaterial and air.
TUNABLE METAMATERIALS MADE OF GRAPHENE-LIQUID CRYSTAL MULTILAYERS
2013-12-02
PIER
Vol. 143, 519-544, 2013
download: 126
Coupling of Thresholding and Region Growing Algorithm for Change Detection in SAR Images
Bhogendra Mishra Junichi Susaki
In this research paper, we propose supervised and unsupervised change detection methodologies focused on the analysis of multitemporal Synthetic Aperture Radar (SAR) images. These approaches are based on three main steps: (1) a comparison of multitemporal image was carried out by normalized difference ratio (NDR) operator; (2) implementing a novel supervised or unsupervised thresholding and (3) generating the change map by coupling of thresholding along with a region growing algorithm. In the first step, the two filtered multitemporal images were used to generate NDR image that was subjected to analysis. In the second step, by assuming a Gaussian distribution in the nochange area, we identified the pixel range that fits the Gaussian distribution better than any other range iteratively to detect the no-change area that eventually separates the change areas. In the supervised method, several sample no-change pixels were selected and the mean (μ) and the standard deviation (σ) were obtained. Then, μ±3σ was applied to select the best threshold values. Finally, a traditional thresholding algorithm was modified and implemented with the coupling of the region growing algorithm to consider the spatial information to generate the change map. The Gaussian distribution was assumed because it better fits the conditional densities of the no-change class in the NDR image. The effectiveness of the proposed methods was verified with the simulated images and the real images associated to geographical locations. The results were compared with the manual trial and error procedure (MTEP) and traditional unsupervised expectation-maximization (EM) method. Both proposed methods gave similar results with MTEP and significant improvement in Kappa coefficient in comparison to the traditional EM method was found in both cities. The coupling of the modified thresholding with the region growing algorithm is very effective with all methods.
COUPLING OF THRESHOLDING AND REGION GROWING ALGORITHM FOR CHANGE DETECTION IN SAR IMAGES
2013-12-01
PIER
Vol. 143, 503-518, 2013
download: 159
Analysis of a Double-Layered Vivaldi Antenna Inside a Metallic Enclosure
Majid OstadRahimi Lotfollah Shafai Joe LoVetri
A double-layered Vivaldi antenna enclosed by a metallic cylindrical cavity is investigated. The antenna is correlated to the same-size circular horn antenna to exploit the equivalent modal distribution of the Vivaldi-cavity antenna. It is shown that the TM11 and TE11 are the dominant modes and the proposed antenna operates similar to a dual-mode conical horn. The antenna is fabricated and successfully tested. The radiation characteristics, mutual coupling, as well as cross-polarization level are compared to a similarly sized Vivaldi without any metallic enclosure.
ANALYSIS OF A DOUBLE-LAYERED VIVALDI ANTENNA INSIDE A METALLIC ENCLOSURE
2013-11-29
PIER
Vol. 143, 485-501, 2013
download: 214
Theoretical Analysis of Resonant Wireless Power Transmission Links Composed of Electrically Small Loops
Alexandre Robichaud Martin Boudreault Dominic Deslandes
This paper presents an analytical method to calculate the scattering parameters of a wireless power transmission link composed of electrically small single loop resonators. The proposed method takes into account all the different couplings in the structure. First, the method is presented and used to find the S-parameters for links composed of circular and rectangular resonators. The model is then used to find the optimal topology for a given transmission distance. Validation of the model is done by comparing its results with experimental measurements. Based on this model, a software used for the design of wireless power transmission links has been developed and is presented. Finally, demonstrations that this model produces excellent results are provided. At resonant frequency, an accuracy better than 2% is reached.
THEORETICAL ANALYSIS OF RESONANT WIRELESS POWER TRANSMISSION LINKS COMPOSED OF ELECTRICALLY SMALL LOOPS
2013-11-21
PIER
Vol. 143, 447-461, 2013
download: 120
Spectral-Domain Formulation of Pillar-Type Photonic Crystal Waveguide Devices of Infinite Extent
Yoshimasa Nakatake Koki Watanabe
This paper presents a novel formulation for the modeling of electromagnetic wave propagation in pillar-type photonic crystal waveguide devices. The structure under consideration is formed in an in nitely extended pillar-type photonic crystal and the wave propagation is controlled by removing some cylinders from the original periodic structure. The structure is considered as cascade connections of straight waveguides, and the input/output properties of the devices are obtained using an analysis method of multilayer structure. Each layer includes periodic circular cylinder array with defects, and the transfer-matrix is obtained by using a spectral-domain approach based on the recursive transition-matrix algorithm with the lattice sums technique and the pseudo-periodic Fourier transform.
SPECTRAL-DOMAIN FORMULATION OF PILLAR-TYPE PHOTONIC CRYSTAL WAVEGUIDE DEVICES OF INFINITE EXTENT
2013-11-20
PIER
Vol. 143, 421-445, 2013
download: 182
A Wideband Frequency-Shift Keying Modulation Technique Using Transient State of a Small Antenna (Invited Paper)
Mohsen Salehi Majid Manteghi Seong-Youp Suh Soji Sajuyigbe Harry G. Skinner
The rate of wireless data transmission is limited by the antenna bandwidth. We present an efficient technique to realize a high-rate direct binary FSK modulation by using the transient properties of high-Q antennas. We show that if the natural resonance of a narrowband resonant-type antenna is switched at a high rate, the radiating signal follows the variation of resonant frequency and provides a high-rate data-transmission regardless of the narrowband characteristics of the antenna. The bit-rate in this method is dictated by the switching speed rather than the impedance bandwidth. Since the proposed technique employs the antenna in a time-varying arrangement, carrier frequencies are not required to be simultaneously within the antenna bandwidth. When demanded, the antenna is tuned to required carrier frequency according to a sequence of digital data. Moreover, if the switching frequency is properly chosen such that the stored energy in the near-zone is not dramatically disturbed, any variation in the antenna resonance will instantaneously appear in the far-field radiation due to the previously accumulated energy in the near field. Therefore, depending on the Q factor and switching speed, radiation bandwidth of the antenna can be improved independently from the impedance bandwidth. Furthermore, we show that a single RF source is sufficient to excite both carrier frequencies and the need for a VCO is obviated. Experimental results are presented to validate the feasibility of the proposed technique.
A WIDEBAND FREQUENCY-SHIFT KEYING MODULATION TECHNIQUE USING TRANSIENT STATE OF A SMALL ANTENNA (Invited Paper)
2013-11-18
PIER
Vol. 143, 405-419, 2013
download: 237
Early Stage Breast Cancer Detection Using Indirect Microwave Holography
Michael Elsdon Okan Yurduseven David Smith
A novel microwave imaging approach for early stage breast cancer detection is described. The proposed technique involves the use of an Indirect Microwave Holographic technique employing a patented synthetic reference wave. This approach offers benefits in terms of simplicity, expense, comfort and safety when compared to current mammography techniques. Experimental results using a simulated breast phantom are included to demonstrate the validity of this technique to obtain 2D images. The technique is then extended to demonstrate the possibility of obtaining 3D images by using indirect stereoscopic holographic imaging.
EARLY STAGE BREAST CANCER DETECTION USING INDIRECT MICROWAVE HOLOGRAPHY
2013-11-18
PIER
Vol. 143, 385-404, 2013
download: 185
A New 2D Non-Spurious Discontinuous Galerkin Finite Element Time Domain (DG-FETD) Method for Maxwell's Equations
Qiang Ren Luis E. Tobon Qing Huo Liu
A new discontinuous Galerkin Finite Element Time Domain (DG-FETD) method for Maxwell's equations is developed. It can suppress spurious modes using basis functions based on polynomials with the same order of interpolation for electric field intensity and magnetic flux density (EB scheme). Compared to FETD based on EH scheme, which reqires different orders of interpolation polynomials for electric and magnetic field intensities, this method uses fewer unknowns and reduces the computation load. The discontinuous Galerkin method is employed to implement domain decomposition for the EB scheme based FETD. In addition, a well-posed time-domain perfectly matched layer (PLM) is extended to the EB scheme to simulate the unbounded problem. Leap frog method is utilized for explicit time stepping. Numerical results demonstrate that the above proposed methods are effective and efficient for 2D time domain TMz multi-domain problems.
A NEW 2D NON-SPURIOUS DISCONTINUOUS GALERKIN FINITE ELEMENT TIME DOMAIN (DG-FETD) METHOD FOR MAXWELL'S EQUATIONS
2013-11-13
PIER
Vol. 143, 369-384, 2013
download: 513
Low Losses Power Distribution Networks in Stripline Technology for Planar Array Antennas
Jose Manuel Inclan-Alonso Jose-Manuel Fernandez Gonzalez Manuel Sierra-Perez
Nowadays low profile passive array planar antennas are being more and more used substituting traditional parabolic antennas in satellite communications. To achieve a good efficiency in printed arrays it is necessary to use a low losses network. A shielded suspended stripline is proposed in this paper. The main aim of this network is to distribute the power among subarrays in an array antenna with minimum losses. Several vertical transitions to subarrays are shown besides some network designs for square arrays at X band.
LOW LOSSES POWER DISTRIBUTION NETWORKS IN STRIPLINE TECHNOLOGY FOR PLANAR ARRAY ANTENNAS