Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-12-02
Coupling of Thresholding and Region Growing Algorithm for Change Detection in SAR Images
By
Progress In Electromagnetics Research, Vol. 143, 519-544, 2013
Abstract
In this research paper, we propose supervised and unsupervised change detection methodologies focused on the analysis of multitemporal Synthetic Aperture Radar (SAR) images. These approaches are based on three main steps: (1) a comparison of multitemporal image was carried out by normalized difference ratio (NDR) operator; (2) implementing a novel supervised or unsupervised thresholding and (3) generating the change map by coupling of thresholding along with a region growing algorithm. In the first step, the two filtered multitemporal images were used to generate NDR image that was subjected to analysis. In the second step, by assuming a Gaussian distribution in the nochange area, we identified the pixel range that fits the Gaussian distribution better than any other range iteratively to detect the no-change area that eventually separates the change areas. In the supervised method, several sample no-change pixels were selected and the mean (μ) and the standard deviation (σ) were obtained. Then, μ±3σ was applied to select the best threshold values. Finally, a traditional thresholding algorithm was modified and implemented with the coupling of the region growing algorithm to consider the spatial information to generate the change map. The Gaussian distribution was assumed because it better fits the conditional densities of the no-change class in the NDR image. The effectiveness of the proposed methods was verified with the simulated images and the real images associated to geographical locations. The results were compared with the manual trial and error procedure (MTEP) and traditional unsupervised expectation-maximization (EM) method. Both proposed methods gave similar results with MTEP and significant improvement in Kappa coefficient in comparison to the traditional EM method was found in both cities. The coupling of the modified thresholding with the region growing algorithm is very effective with all methods.
Citation
Bhogendra Mishra, and Junichi Susaki, "Coupling of Thresholding and Region Growing Algorithm for Change Detection in SAR Images," Progress In Electromagnetics Research, Vol. 143, 519-544, 2013.
doi:10.2528/PIER13092502
References

1. Lunetta, R. S., J. F. Knight, J. Ediriwickrema, J. G. Lyon, and L. D. Worthy, "Land-cover change detection using multi-temporal MODIS NDVI data ," Remote Sens. of Envt., Vol. 105, No. 2, 142-154, Nov. 2006.
doi:10.1016/j.rse.2006.06.018

2. Moser, G. and S. B. Serpico, "Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery ," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2972-2982, Oct. 2006.
doi:10.1109/TGRS.2006.876288

3. Bazi, Y., L. Bruzzone, and F. Melgani, "An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images ," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 4, 874-887, Apr. 2005.
doi:10.1109/TGRS.2004.842441

4. Liao, M., L. Jiang, H. Lin, B. Buang, and J. Gong, "Urban change detection based on coherence and intensity characteristics of SAR imagery ," Photogrammetric Engineering & Remote Sensing, Vol. 74, No. 8, 999-1006, Aug. 2008.
doi:10.14358/PERS.74.8.999

5. Ban, Y. and O. A. Yousif, "Multitemporal space borne SAR data for urban change detection in China," IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 4, 1087-1094, Aug. 2012.
doi:10.1109/JSTARS.2012.2201135

6. Rignot, E. J. M. and J. J. Van Zyl, "Change detection techniques for ERS-1 SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 31, No. 4, 896-896, Jul. 1993.
doi:10.1109/36.239913

7. Pacifici, F., F. Del Frate, C. Solimini, and W. J. Emery, "An innovative neural-net method to detect temporal changes in high highresolution ," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 9, 2940-2952, Sep. 2007.
doi:10.1109/TGRS.2007.902824

8. Uprety, P. and F. Yamazaki, "Detection of building damage in the 2010 Haiti earthquake using high-resolution SAR intensity images ," J. Japan Asso. for Earthquake Engineering, Vol. 6, 21-35, 2012.

9. Ramesh, N., J. H. Yoo, and I. K. Sethi, "Thresholding based on histogram approximation," IEEE Proc. — Vis. Image Signal IEEE Proc. — Vis. Image Signal, Vol. 142, No. 5, 271-279, Oct. 1995.
doi:10.1049/ip-vis:19952007

10. Kittler, J. Illingworth and J. Illingworth, "Minimum error thresholdin," Pattern Recognit., Vol. 19, No. 1, 41-47, 1986.
doi:10.1016/0031-3203(86)90030-0

11. Albregtsen, F., "Nonparametric histogram thresholding methods — Error versus relative object area," Proc. Eighth Scandinavian Conf. Image Analysis, 273-280, 1993.

12. Bazi, Y., L. Bruzzone, and F. Melgani, "Automatic identification of the number and values of decision thresholds in the log-ratio image for change detection in SAR images ," IEEE Geosci. and Remote Sens. Letters, Vol. 3, No. 2, 349-353, Jul. 2006.
doi:10.1109/LGRS.2006.869973

13. Dekker, R. J., "Speckle filtering in satellite SAR change detection imagery," Int. J. Remote Sens., Vol. 19, No. 6, 1133-1146, Nov. 1998.
doi:10.1080/014311698215649

14. Im, J. and J. R. Jensen, "A change detection model based on neighborhood correlation image analysis and decision tree classification ," Remote Sens. of Envt., Vol. 99, No. 3, 326-340, Sep. 2005.
doi:10.1016/j.rse.2005.09.008

15. Cannavacciuolo, L., Cannavacciuolo, L., G. Moser, W. Emery, and S. B. Serpico, "A contextual change detection method for high-resolution optical images of urban areas," Urban Remote Sensing Joint Event, 1-7, Apr. 2007.

16. Hussain, M., D. Chen, A. Chen, H. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 80, 91-106, Apr. 2013.
doi:10.1016/j.isprsjprs.2013.03.006

17. Yasnoff, W. A., J. K. Mui, and J. W. Bacus, "Error measures for scene segmentation," Pattern Recognit., Vol. 9, No. 4, 217-231, 1977.
doi:10.1016/0031-3203(77)90006-1

18. Mishra, P. and D. Singh, "Land cover classification of PALSAR images by knowledge based decision tree classifier and supervised classifiers based on SAR observables ," Progress In Electromagnetics Research B, Vol. 30, 47-70, 2011.

19. Adams, R. and L. Bischof, "Seeded region growing on Pattern Analysis and Machine Intelligence," IEEE Trans., Vol. 16, No. 6, 641-647, Jun. 1994.

20. Congalton, R. G. and K. Green, Assessing the Accuracy of Remotely Sensed Data: Principals and Practices, CRC Press, 2009.

21. Foody, G. M., "Accessing the accuracy of land cover change with imperfect ground reference data," Remote Sens. of Envt., Vol. 114, No. 10, 2271-2283, Oct. 2010.
doi:10.1016/j.rse.2010.05.003

22. Inglada, J. and G. Mercier, "A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis ," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, 1432-1445, May 2007.
doi:10.1109/TGRS.2007.893568

23. "World Population Prospects, The 2012 Revision, ,", 2012.
doi:10.1109/TGRS.2007.893568

24. Helsel, D. R. and R. M. Hirsch, Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, Chapter A3, US Geological Survey, 2002.