Vol. 39
Latest Volume
All Volumes
PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
PIER
Vol. 39, 299-339, 2003
download: 162
Finite Difference Time Domain Modeling of Light Amplification in Active Photonic Band Gap Structures
Abstract-The paper deals with the modeling, based on the Finite Difference Time Domain method, of active one- and twodimensional photonic crystals. The onset of laser oscillation is observed by simulating the active substance as having a negative frequency-dependent Lorentzian-shaped conductivity so including into Maxwell's equations an electric current density. Particular attention is devoted to the implementation of uniaxial perfectly matched layer absorbing boundary conditions for the simulation of infinitely extending structures having gain features. Laser behaviour is simulated as a function of various parameters; the threshold wavelengthand conductivity are evaluated as the wavelengthand conductivity where the transmittance diverges. Moreover, the properties of the active two-dimensional photonic band gap structures are given in terms of a Q quality factor which increases by increasing the crystal size and strongly depends on the lattice shape. For the square lattice, when the crystal size increases from N = 2 to N = 8 the Q-factor increases by about an order of magnitude (from 0.027 to 0.110) for TE polarization while for TM polarization it decreases from 0.025 to 0.022. At last the Q-factor pertaining to the chess-board lattice, to parity of other parameters, assumes greater values and already for N = 4, it reaches the values obtained for the 16×8 square lattice, for bothTE and TM polarizations.
Finite Difference Time Domain  Modeling of
Light Amplification in Active Photonic
 Band Gap Structures
PIER
Vol. 39, 281-298, 2003
download: 113
Topological Wavelength Shifts [Electromagnetic Field in Lobachevskian Geometry]
It is shown that in hyperbolic spaces, an electromagnetic radiation experiences shifts in spectrum as a function of curvature and distance. The equation relating distance in hyperbolic space, its curvature, and spectral shift is derived by method of horospheres. The active nature of the Lobachevskian vacuum is discussed with applications to physics.
Topological Wavelength Shifts [Electromagnetic
Field in Lobachevskian Geometry]
PIER
Vol. 39, 265-279, 2003
download: 166
Modes in a Hard Surface Waveguide with Uniaxially Anisotropic Chiral Material Filling
Propagation of waves in circular waveguide withth e boundary condition of hard surface is considered. The waveguide is filled with uniaxial chiral material. This study is a generalization of previously studied cases withisotropic chiral or anisotropic material filling. The eigenvalue equation is formed and the corresponding eigenmodes are presented. It is seen that the hard surface boundary condition simplifies the field analysis remarkable. While the eigenwaves in anisotropic waveguide were TE and TM fields in this more general case the eigenwaves are elliptically polarized hybrid fields. Since the eigenwaves are certain combinations of TE and TM fields and propagate withdifferen t propagation factors, uniaxial chiral medium can be used for polarization transformation. Reflection and transmission from a uniaxial chiral section of a waveguide is analyzed withn umerical examples.
Modes in a Hard Surface Waveguide with Uniaxially Anisotropic
Chiral Material Filling
PIER
Vol. 39, 249-264, 2003
download: 95
Homogenization of an Array of s -Shaped Particles Located on a Dielectric Interface
An analytical model of a grid composed of small S-shaped conducting particles located on the surface of a dielectric slab is presented. This approach replaces the original one-layer structure with metallic particles printed on the interface by a multilayered structure with homogenized permittivities for each layers. This way one can homogenize the arrays of small resonant particles. The analytical model is verified by numerical simulations for the case of normal incidence of the plane wave. The homogenization is possible due to the small sizes of S-particles compared to the resonant wavelength in the substrate and due to the small thickness of the whole structure.
Homogenization of an Array of
S-Shaped Particles Located on a Dielectric Interface
PIER
Vol. 39, 193-247, 2003
download: 118
Oscillations in Slotted Resonators with Several Slots: Application of Approximate Semi-Inversion
We consider oscillations in cylindrical slotted resonators formed by combinations of rectangular domains with several slots cut in the walls using the methods of approximate semi-inversion of integral operator-valued functions with a logarithmic singularity of the kernel. The initial boundary value problems for the Helmholtz equation are reduced to Fredholm integral equations and systems of integral equations of the first kind with a logarithmic singularity. In the case of narrow slots, the dispersion equations are obtained and evaluated using perturbations and the small-parameter method. Eigenfrequencies and eigenfields are calculated explicitly. The values of geometrical and material parameters are determined that lead to the interaction of oscillations. The results obtained are used for improving the design of filters and switches on the basis of simple model prototype structures.
Oscillations in Slotted Resonators with Several Slots: Application of 
Approximate
Semi-Inversion
PIER
Vol. 39, 177-192, 2003
download: 104
A Genetic Algorithm/Method of Moments Approach to the Optimization of an RF Coil for MRI Applications --- Theoretical Considerations
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190 MHz and demonstrates excellent radiofrequency field homogeneity.
A Genetic Algorithm/Method of Moments Approach to the Optimization of 
an RF Coil
for MRI Applications --- Theoretical Considerations
PIER
Vol. 39, 147-175, 2003
download: 226
Simple Time-Domain Expressions for Prediction of Crosstalk on Coupled Microstrip Lines
This paper presents an improved variant of timedomain method for predicting crosstalk on parallel-coupled matched terminated microstrip lines. This method derives simple near-end and far-end time-domain crosstalk expressions which are applicable to lossless case with significant harmonic frequency < 1 GHz. The expressions are in polynomial form with geometrical dimensions of the structure and stimulus information as the only required entry parameters. They are simpler as compared to other methods because the difficult-to-determine distributed RLCG electrical parameters of the coupled lines are not needed. A look-up table for the polynomial coefficients is generated for easy application of this technique. The expressions are applicable for board thickness of 4-63 mils, 30-70Ω line characteristic impedance, 0.5W-4.0W (where W is the line width) inner edge to edge separation, and 3-5 dielectric constant. For significant harmonic frequency > 1 GHz, the effect of both losses and dispersion on the crosstalk levels is accounted for by investigating the gradient of the distorted driving signal. The peak crosstalk levels are then predicted by modifying the time derivative term in the lossless expressions. In addition, the far-end crosstalk is proved to saturate at half of the magnitude of the driving signal entering the active line. The saturation phenomenon is studied from the viewpoint of difference in odd-mode and even-mode propagation velocities.
Simple Time-Domain Expressions for Prediction of Crosstalk on
Coupled Microstrip Lines
PIER
Vol. 39, 125-145, 2003
download: 125
Compression of Polarimetric Synthetic Aperture Radar Data
The paper deals with proposition and evaluation of new and specific methods to represent vector radar data acquired by means a side-looking measurement in order to use compression process of Lind, Buzo, Gray (LBG), and Kohonen's self organizing feature maps of topology. The aim is to enable after coding, transmission, and decoding a high-resolution reconstruction image using the Synthetic Aperture Radar (SAR) methods. The approach proposed for compression uses the statistical properties of the signals to be compressed in order to perform the vector quantification in an optimal way.
Compression of Polarimetric Synthetic Aperture Radar Data
PIER
Vol. 39, 93-123, 2003
download: 160
An Effective Power Synthesis Technique for Shaped, Double-Reflector Multifeed Antennas
A new synthesis algorithm for shaped, double-reflector antennas with complex array feed is presented. The approach presented here aims to improve the efficiency of synthesis techniques without missing the required accuracy. The algorithm is based on a convenient splitting of the original problem into two phases, each one involving a sub-problem significantly simpler than the original one. A double reflector synthesis problem involving only Fourier Transform (FT) operators is of concern during the first phase. The subre- flector surface and a first estimate of the main reflector geometry are obtained in this step. A single reflector synthesis problem is considered during the second phase wherein the final main reflector surface and the excitation coefficients of the primary feed array are obtained. While in the first phase only approximate relationships between the unknowns and the secondary radiated field are exploited, in the second phase accurate radiation operators are involved. Despite this accuracy, the second phase is still numerically effective since it involves a single reflector synthesis problem and exploits, as "good" starting point, the main reflector estimate obtained during the first phase. The effectiveness of the approach is due to the fact that the necessity of dealing simultaneously with two reflector surfaces, the key of the synthesis difficulties, is afforded only during the first phase where efficient computational tools are allowed. A numerical example shows the effectiveness of the proposed approach.
An Effective Power Synthesis Technique for Shaped, Double-Reflector
Multifeed Antennas
PIER
Vol. 39, 61-91, 2003
download: 156
Green's Function Expansions in Dyadic Root Functions for Shielded Layered Waveguides
Dyadic Green's functions for inhomogeneous parallel-plate waveguides are considered. The usual residue series form of the Green's function is examined in the case of modal degeneracies, where secondorder poles are encountered. The corresponding second-order residue contributions are properly interpreted as representing "associated functions" of the structure by constructing a new dyadic root function representation of the Hertzian potential Green's dyadic. The dyadic root functions include both eigenfunctions (corresponding to first-order residues) and associated functions, analogous to the idea of Jordan chains in finite-dimensional spaces. Numerical results are presented for the case of a two-layer parallel-plate waveguide.
Green's Function Expansions in Dyadic Root Functions for Shielded 
 Layered Waveguides
PIER
Vol. 39, 47-59, 2003
download: 157
FDTD Modeling of a Vibrating Intrinsic Reverberation Chamber
The field conditions inside a vibrating intrinsic reverberation chamber (VIRC) are examined. By the use of the Finite Difference Time Domain (FDTD) method,the field strength in the VIRC is calculated,and an investigation of the field uniformity and the field distribution is performed. The modes inside the cavity are excited by applying an appropriately modulated waveform on a dipoles gap. The use of this kind of waveform enables the study of the field conditions over a wide frequency range. On the contrary,an implementation of the field excitation with an unmodulated carrier would require a simulation of the FDTD method at each frequency of interest. Thus,a considerable reduction in the simulation time is achieved. The results presented,describing the field behavior inside the enclosure,agree with theory to a high degree.
FDTD Modeling of a Vibrating Intrinsic Reverberation
Chamber
PIER
Vol. 39, 1-45, 2003
download: 175
Time-Domain EFIE, MFIE, and CFIE Formulations Using Laguerre Polynomials as Temporal Basis Functions for the Analysis of Transient Scattering from Arbitrary Shaped Conducting Structures
In this paper, we present time-domain integral equation (TDIE) formulations for analyzing transient electromagnetic responses from three-dimensional (3-D) arbitrary shaped closed conducting bodies using the time-domain electric field integral equation (TDEFIE), the time-domain magnetic field integral equation (TD-MFIE), and the time-domain combined field integral equation (TD-CFIE). Instead of the conventional marching-on in time (MOT) technique, the solution methods in this paper are based on the Galerkin's method that involves separate spatial and temporal testing procedure. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D structures. The timedomain unknown coefficient is approximated by using an orthonormal basis function set that is derived from the Laguerre functions. These basis functions are also used as temporal testing. Using these Laguerre functions it is possible to evaluate the time derivatives in an analytic fashion. We also propose a second alternative formulation to solve the TDIE. The methods to be described result in very accurate and stable transient responses from conducting objects. Detailed mathematical steps are included and representative numerical results are presented and compared.
Time-Domain EFIE, MFIE, and CFIE Formulations Using Laguerre Polynomials 
 as Temporal Basis Functions for the Analysis of Transient Scattering from 
 Arbitrary Shaped Conducting Structures