Vol. 99
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-09
PIER
Vol. 99, 453-463, 2009
download: 113
Analysis of Finite Periodic Dielectric Gratings by the Finite-Difference Frequency-Domain Method with the Sub-Entire-Domain Basis Functions and Wavelets
Gang Zheng Bing-Zhong Wang Hua Li Xiao-Fei Liu Shuai Ding
In this paper, the finite-difference frequency-domain (FDFD) method, boundary integral equation (BIE) method and sub-entire-domain (SED) basis functions are combined to analyze scatterings from finite periodic dielectric gratings. The wavelet method is used to reduce the number of inner product operations in calculating the mutual-impedance elements between the SED basis functions. In the numerical examples, the RCS curves obtained by the method in this paper are in good agreement with those obtained by the classical full-domain FDFD method, but the computational times are largely reduced and no large matrix equation needs to be stored and solved in the former.
ANALYSIS OF FINITE PERIODIC DIELECTRIC GRATINGS BY THE FINITE-DIFFERENCE FREQUENCY-DOMAIN METHOD WITH THE SUB-ENTIRE-DOMAIN BASIS FUNCTIONS AND WAVELETS
2009-12-08
PIER
Vol. 99, 427-451, 2009
download: 139
Experiments with Lanczos Biconjugate a-Orthonormalization Methods for MoM Discretizations of Maxwell's Equations
Yan-Fei Jing Bruno Carpentieri Ting-Zhu Huang
In this paper, we consider a novel class of Krylov projection methods computed from the Lanczos biconjugate A-Orthonormalization procedure for the solution of dense complex non-Hermitian linear systems arising from the Method of Moments discretization of Maxwell's equations. We report on experiments on a set of model problems representative of realistic radar-cross section calculations to show their competitiveness with other popular Krylov solvers, especially when memory is a concern. The results presented in this study will contribute to assess the potential of iterative Krylov methods for solving electromagnetic scattering problems from large structures enriching the database of this technology.
EXPERIMENTS WITH LANCZOS BICONJUGATE A-ORTHONORMALIZATION METHODS FOR MOM DISCRETIZATIONS OF MAXWELL'S EQUATIONS
2009-12-08
PIER
Vol. 99, 405-426, 2009
download: 104
Microwave Screen with Magnetically Controlled Attenuation
Sergey Nickolaevich Starostenko Konstantin Rozanov
The effect of magnetic bias on dielectric spectra of composite sheets filled with Fe or Co-based microwires is studied experimentally and via simulation. The permittivity is measured using a free-space technique within the frequency band from 6 to 12 GHz. The bias is applied either parallel or perpendicular to the microwave electric field; the bias strength varies from 0 to 2.5 kOe. The composites with Fe-based wires reveal a single region of bias dependent permittivity under bias about 800-1000 Oe. The composites with Co-based wires reveal two such regions: the high-field region is close to that of composites with Fe wires, and the low-field region corresponds to the coercive field of Co wires (2-3 Oe). The high-field effect is related to the dependence of ferromagnetic resonance (FMR) parameters on bias; the low-field effect is related to the rearrangement of the domain structure of Co-based wires. The interference of magnetoimpedance and dipole resonance is analyzed, revealing the effects off wire length, diameter, parameters of magnetic resonance and composite structure. The results are considered in view of application to the problem of controlled microwave attenuation. Simulation shows that the narrower is the FMR spectrum and the higher is the admissible loss of a sheet in a transparent state, the wider is the dynamic range of attenuation control. The attenuation range of a lattice of continuous wires is smaller than that of a screen with identical wire sections, where the magnetoimpedance effect is amplified resonantly. At 15 GHz frequency the strength of the bias switching opaque sheet with Fe-based wires to the transparent state is about 2000 Oe. For 3 dB admissible loss, the range of attenuation control about 10 dB is feasible in a composite with aligned wire sections. If the aligned sections are distributed regularly, the loss in a transparent state is about 1 dB lower.
MICROWAVE SCREEN WITH MAGNETICALLY CONTROLLED ATTENUATION
2009-12-02
PIER
Vol. 99, 383-404, 2009
download: 234
Dark Soliton Behaviors Within the Nonlinear Micro and Nanoring Resonators and Applications
Somsak Mitatha
We propose some fascinating results regarding dark soliton pulse propagation within the nonlinear micro and nano waveguides. The system consists of nonlinear micro and nanoring resonators whereby the dark soliton is input into the system and travels within the waveguide. A continuous dark soliton pulse is sliced into smaller pulses by the nonlinear effect which is known as chaos. The nonlinear behaviors such as chaos, bistability and bifurcation are analyzed and discussed. The broad area of applications such as dark-bright soliton conversion and power amplification, binary code generation by the dark-bright soliton pair, dark soliton trapping and millimeter wave generation are proposed and discussed. The biggest advantage is that, where security is the most important consideration, power amplification can be used to perform the long distance link.
DARK SOLITON BEHAVIORS WITHIN THE NONLINEAR MICRO AND NANORING RESONATORS AND APPLICATIONS
2009-12-01
PIER
Vol. 99, 355-382, 2009
download: 109
Chitosan Spheroids with Microwave Modulated Drug Release
Zakaria Zabliza Tin Wui Wong
The interplay effects of matrix formulations with microwave on drug release were investigated using an agglomerate system. Chitosan spheroids were formulated with stearic acid and/or sodium chloride by extrusion-spheronization technique, and chlorpheniramine maleate as water-soluble model drug. The spheroids were treated by microwave at 80 W for 5 to 40 min. The profiles of drug dissolution, drug content, drug-polymer interaction, polymer-polymer interaction, sodium leaching, matrix morphology and integrity were determined. Unlike chitosan matrix prepared by ionotropic gelation method, the retardation of drug release from chitosan spheroids by microwave required a more complex formulation containing both stearic acid and sodium chloride unless a high stearic acid fraction was used. These spheroids demonstrated a high resistance to disintegration during dissolution owing to salt-induced bridging by sodium chloride. In response to microwave, sodium chloride aided stearic acid spread and effected domain interaction via C=O moiety over a matrix with reduced specific surface area thereby reducing drug dissolution. The drug release of spheroids can be retarded by microwave through promoting the layering of hydrophobic stearic acid in a matrix structure sustained by sodium chloride.
CHITOSAN SPHEROIDS WITH MICROWAVE MODULATED DRUG RELEASE
2009-12-01
PIER
Vol. 99, 339-354, 2009
download: 115
Effect of Temperature and Multiple Scattering on Rain Attenuation of Electromagnetic Waves by a Simple Spherical Model
Eko Setijadi Akira Matsushima Naoki Tanaka Gamantyo Hendrantoro
Specific rain attenuation is discussed from the viewpoint of numerical solution for scattering and absorption of electromagnetic waves related to dielectric spheres. Special attention is paid to the quantitative evaluations considering the change of temperature and the existence of multiple scattering effect. The analysis is based on the set of Stratton's vector spherical wave functions and its addition theorem, which lead to the simultaneous linear equations for the expansion coefficients with adaptively selected truncation numbers. Computed extinction cross sections lead directly to the specific rain attenuation, where the Weibull raindrop distribution model is used. It is discussed how the dependence of the permittivity of water on temperature and frequency affects the attenuation property. Furthermore, the effect of multiple scattering is evaluated in terms of the root mean square of attenuation deviation from the simple superposition of single scattering (Mie's) coefficients. Contrary to general belief, this deviation is the highest at around the boundary between microwave and millimeter wave bands.
EFFECT OF TEMPERATURE AND MULTIPLE SCATTERING ON RAIN ATTENUATION OF ELECTROMAGNETIC WAVES BY A SIMPLE SPHERICAL MODEL
2009-12-01
PIER
Vol. 99, 323-338, 2009
download: 304
Analytical and Numerical Analyses of a Current Sensor Using Non Linear Effects in a Flexible Magnetic Transducer
Eric Vourc'h Pierre-Yves Joubert Lionel Cima
A theoretical study and a simulation method are proposed for superparamagnetic current sensors implementing a uniformly wound toroidal core topology. So as to be easy to implement, this sensor topology can be made flexible thanks to the use of a core made up of a superparamagnetic powder embedded in a flexible plastic matrix. The measurement of DC and AC currents is possible provided that a sinusoidal magnetic field excitation is applied to the superparamagnetic transducer. An analytical model is proposed for computing the sensor output signal and we demonstrate that when the detection of the component at the second order harmonic of the excitation frequency is used, the measurement is independent of the conductor position in a given current range. For simulating the dynamic response of the sensor, we propose to combine the analytical model, or a finite elements model, with a time-discretization method. Furthermore, simulations are carried out considering a ring shaped sensor and the real magnetization characteristics of a superparamagnetic material. Simulations are provided over the [-10 kA 10 kA] range and for various amplitudes of the excitation signal. The results obtained with the analytical model, which is computationally efficient, are within 4% to 12.7% from the numerical results.
ANALYTICAL AND NUMERICAL ANALYSES OF A CURRENT SENSOR USING NON LINEAR EFFECTS IN A FLEXIBLE MAGNETIC TRANSDUCER
2009-12-01
PIER
Vol. 99, 307-322, 2009
download: 93
Signal Processing for Noise Cancellation in Actual Electromagnetic Environment
Hisako Orimoto Akira Ikuta
The observed phenomena in actual electromagnetic environment are inevitably contaminated by the background noise of arbitrary distribution type. Therefore, in order to evaluate the electromagnetic environment, it is necessary to establish some signal processing methods to remove the undesirable effects of the background noise. In this paper, we propose a noise cancellation method for estimating a specific signal with the existence of background noise of non-Gaussian distribution. By applying the well-known least mean squared method for the moment statistics with several orders, a practical method for estimating the specific signal is derived. The effectiveness of the proposed theoretical method is experimentally confirmed by applying it to an estimation problem in actual magnetic field environment.
SIGNAL PROCESSING FOR NOISE CANCELLATION IN ACTUAL ELECTROMAGNETIC ENVIRONMENT
2009-11-27
PIER
Vol. 99, 289-306, 2009
download: 174
Numerical Analysis of Apodized Fiber Bragg Gratings Using Coupled Mode Theory
Nai-Hsiang Sun Jiun-Jie Liau Yean-Woei Kiang Shih-Chiang Lin Ru-Yen Ro Jung-Sheng Chiang Hung-Wen Chang
In this paper, the coupled mode theory is used to analyze apodized fiber Bragg gratings (FBGs). Since the profile of gratings varies with the propagation distance, the coupled mode equations (CMEs) of apodized FBGs are solved by the fourth-order Runge-Kutta method (RKM) and piecewise-uniform approach (PUA). We present two discretization techniques of PUA to analyze the apodization profile of gratings. A uniform profile FBG can be expressed as a system of first-order ordinary differential equations with constant coefficients. The eigenvalue and eigenvector technique as well as the transfer matrix method is applied to analyze apodized FBGs by using PUAs. The transmission and reflection efficiencies calculated by two PUAs are compared with those computed by RKM. The results show that the order of the local truncation error of RKM is h-4, while both PUAs have the same order of the local truncation error of h-2. We find that RKM, capable of providing fast-convergent and accurate numerical results, is a preferred method in solving apodized FBG problems.
NUMERICAL ANALYSIS OF APODIZED FIBER BRAGG GRATINGS USING COUPLED MODE THEORY
2009-11-26
PIER
Vol. 99, 273-287, 2009
download: 118
Tunable Lateral Shift through Nonlinear Composites of Nonspherical Particles
Dongliang Gao Lei Gao
The Goos-Hanchen (GH) shift of the reflected waves from nonlinear nanocomposites of interleaved nonspherical metal and dielectric particles are investigated both theoretically and numerically. First, based on spectral representation theory and effective medium approximation, we derive the field-dependent effective permittivity of the nonlinear composites. Then the stationary phase method is adopted to study the GH shifts from nonlinear composites. It is found that for a given volume fraction, there exist two critical polarization factors Lc1 and Lc2, and bistable GH shifts appear only when L < Lc1 or L < Lc2. Moreover, both giant negative and positive GH shifts accompanied with large reflectivity are found, hence they can be easily observed in experiments. The reversal of the GH shift may be controlled by adjusting both the incident angle and the applied field. Numerical simulations for Gaussian-type incident beam are performed, and good agreement between simulated data and theoretical ones is found especially for large waist width.
TUNABLE LATERAL SHIFT THROUGH NONLINEAR COMPOSITES OF NONSPHERICAL PARTICLES
2009-11-24
PIER
Vol. 99, 261-272, 2009
download: 103
Conductive Medium Modeling with an Augmented GIBC Formulation
Zhiguo Qian Mei Song Tong Weng Cho Chew
This paper describes an augmented generalized impedance boundary condition (AGIBC) formulation for accurate and efficient modeling of conductive media. It is a surface integral equation method, so that it uses a smaller number of unknowns. The underlying GIBC provides a rigorous way to account for the skin effect. Combining with the novel augmentation technique, the AGIBC formulation works stably in the low-frequency regime. No looptree search is required. The formulation also allows for its easy incorporation of fast algorithms to enable the solving of large problems with many unknowns. Numerical examples are presented to validate the formulation.
CONDUCTIVE MEDIUM MODELING WITH AN AUGMENTED GIBC FORMULATION
2009-11-23
PIER
Vol. 99, 245-260, 2009
download: 89
Exploitation of TE-TM Scattering Data for Microwave Imaging through the Multi-Scaling Reconstruction Strategy
Lorenzo Poli Paolo Rocca
In this paper, the solution of two-dimensional inverse scattering problems is addressed by probing the unknown scenarios with TE and TM waves. To better exploit the information content of the scattered data the multi-zooming approach is used. The results of experiments with single as well as multiple scatterers are reported and discussed also in comparison with single-polarization inversions.
EXPLOITATION OF TE-TM SCATTERING DATA FOR MICROWAVE IMAGING THROUGH THE MULTI-SCALING RECONSTRUCTION STRATEGY
2009-11-23
PIER
Vol. 99, 225-244, 2009
download: 110
Specialty Fibers Designed by Photonic Crystals
Najmeh Nozhat Nosrat Granpayeh
In this paper, several kinds of photonic crystal fibers (PCFs) have been proposed and characterized. Two types of PCF structures have been proposed, air holes in silica or silica rods in air in a triangular lattice around the core. It has been shown that by reshaping the cladding holes, varying the diameters of the holes in one or two rows around the core or changing the refractive index of the holes, different types of specialty fibers, such as dispersion shifted fibers (DSFs), non-zero dispersion shifted fibers (NZ-DSFs), dispersion flattened fibers (DFFs), dispersion compensating fibers (DCFs), and polarization maintaining fibers (PMFs), can be designed. The PCF core is silica to support the propagation of lightwave by total internal reflection (TIR) in the third telecommunication window. The chromatic dispersion, confinement loss and modal birefringence of the proposed specialty fibers have been numerically derived.
SPECIALTY FIBERS DESIGNED BY PHOTONIC CRYSTALS
2009-11-23
PIER
Vol. 99, 211-224, 2009
download: 102
Study STAP Algorithm on Interference Target Detect Under Nonhomogenous Environment
Qingyong Gong Zhao-Da Zhu
In conventional statistical STAP algorithms, the existence of interference target in training samples will lead to signal cancellation, resulting in the output SCR falling and the moving target detection performance degrading. The nonhomogeneity detector is an effective way to restrain the outlier, which can improve the covariance matrix estimation by detecting the samples containing outliers and rejecting them, and improve the STAP performance. A new interference target detection algorithm is proposed in this paper, the outlier detection is realized by using the samples' data phase information. Compared with traditional method, the improved algorithm is more sensitive to interfering target with different azimuth and intensity. Simulation results demonstrate the validity of this improved method.
STUDY STAP ALGORITHM ON INTERFERENCE TARGET DETECT UNDER NONHOMOGENOUS ENVIRONMENT
2009-11-20
PIER
Vol. 99, 195-209, 2009
download: 102
Convergence Study of Current Sampling Profiles for Antenna Design in the Presence of Electrically Large and Complex Platforms Using Fit-UTD Hybridization Approach
Heng-Tung Hsu Fang-Yao Kuo Hsi-Tseng Chou
Designing antennas in the presence of electrically large and complex structures such as cars or aircrafts has become an important issue for next generation communication systems. Based on the principle of equivalence, the hybridization approach integrating FIT-UTD techniques has shown its superiority in terms of its computing efficiency. In such approach, discrete samplings of continuous electric or magnetic field components resulted from low frequency (LF) sub-domain are required to be converted to the excitation current sources for the high frequency (HF) sub-domain. Thus, the overall accuracy of the calculation results will strongly depend on the similarities between the sampled and original field distributions with both the magnitude and phase involved. In this paper, convergence study of electric and magnetic current sampling is performed. Impact of the different sampling profiles on the overall accuracy is also investigated through numerical examples. Results reveal that convergence of the far-field radiation patterns are closely related to the sampling profiles.
CONVERGENCE STUDY OF CURRENT SAMPLING PROFILES FOR ANTENNA DESIGN IN THE PRESENCE OF ELECTRICALLY LARGE AND COMPLEX PLATFORMS USING FIT-UTD HYBRIDIZATION APPROACH
2009-11-19
PIER
Vol. 99, 179-194, 2009
download: 118
Ideally Hard Struts to Achieve Invisibility
Jose-Manuel Fernandez Gonzalez Eva Rajo-Iglesias Manuel Sierra-Castaner
In this work, ideally hard struts with different cross sections are analyzed. Firstly, the characterization of the invisibility of a given object in terms of an equivalent blockage width is discussed. Then, the effect of the incidence angle on struts for reducing electromagnetic blockage using the same ideally hard cylinders is analyzed. It is shown that the variation of incidence angle in azimuth is very sensitive in terms of blockage for both polarizations. Finally, design charts for ideally hard struts which reduce blockage simultaneously for TE and TM cases are presented. This can be used to define some performance goals for final realized struts.
IDEALLY HARD STRUTS TO ACHIEVE INVISIBILITY
2009-11-19
PIER
Vol. 99, 163-178, 2009
download: 129
Exotic Characteristics of Power Propagation in the Chiral Nihility Fiber
Jian-Feng Dong
The novel characteristics of power propagation of guided modes in the chiral nihility fiber have been investigated theoretically. The formulas of electromagnetic fields in the core and cladding for guided modes are presented in detail. The dispersion equations, energy flux and power of guided modes are derived. The numerical results are given and discussed. Some exotic features of power propagation have been found in the chiral nihility fiber.
EXOTIC CHARACTERISTICS OF POWER PROPAGATION IN THE CHIRAL NIHILITY FIBER
2009-11-18
PIER
Vol. 99, 149-161, 2009
download: 126
Further Study of Rainfall Effect on VHF Forested Radio-Wave Propagation with Four-Layered Model
Yu Song Meng Yee Hui Lee Boon Chong Ng
In this paper, rainfall effect on the VHF radio-wave propagation in a tropical forest is further studied in details. Theoretical study and experimental investigations are performed with the help of a four-layered model for forested environment. It is found that the lateral wave traveling along the air-canopy interface, the direct waves, and the ground reflected waves are the main modes for VHF radio-wave propagation in forest. The rainfall can affect these propagating waves to different extents. Especially, due to the increase in the dielectric permittivity of the wet canopy layer by rain water, the time of arrival of the direct wave traveling through the canopy layer can be delayed significantly. Finally, the dielectric permittivity for the wet canopy layer under different rain events is evaluated empirically.
FURTHER STUDY OF RAINFALL EFFECT ON VHF FORESTED RADIO-WAVE PROPAGATION WITH FOUR-LAYERED MODEL
2009-11-17
PIER
Vol. 99, 131-148, 2009
download: 277
Maxwell Garnett Rule for Dielectric Mixtures with Statistically Distributed Orientations of Inclusions
Marina Koledintseva Richard E. DuBroff Robert W. Schwartz
An analytical model of an effective permittivity of a composite taking into account statistically distributed orientations of inclusions in the form of prolate spheroids will be presented. In particular, this paper considers the normal Gaussian distribution for either zenith angle, or azimuth angle, or for both angles describing the orientation of inclusions. The model is an extension of the Maxwell Garnett (MG) mixing rule for multiphase mixtures. The resulting complex permittivity is a tensor in the general case. The formulation presented shows that the parameters of the distribution law for orientation of inclusions affect the frequency characteristics of the composites, and that it is possible to engineer the desirable frequency characteristics, if the distribution law is controlled.
MAXWELL GARNETT RULE FOR DIELECTRIC MIXTURES WITH STATISTICALLY DISTRIBUTED ORIENTATIONS OF INCLUSIONS
2009-11-17
PIER
Vol. 99, 109-129, 2009
download: 152
Synthesis of Monopulse Sub-Arrayed Linear and Planar Array Antennas with Optimized Sidelobes
Giacomo Oliveri Lorenzo Poli
In this paper, three approaches for the synthesis of the optimal compromise between sum and difference patterns for sub-arrayed linear and planar arrays are presented. The synthesis problem is formulated as the definition of the sub-array configuration and the corresponding sub-array weights to minimize the maximum level of the sidelobes of the compromise difference pattern. In the first approach, the definition of the unknowns is carried out simultaneously according to a global optimization schema. Differently, the other two approaches are based on a hybrid optimization procedures, exploiting the convexity of the problem with respect to the sub-array weights. In the numerical validation, representative results are shown to assess the effectiveness of the proposed approaches. Comparisons with previously published results are reported and discussed, as well.
SYNTHESIS OF MONOPULSE SUB-ARRAYED LINEAR AND PLANAR ARRAY ANTENNAS WITH OPTIMIZED SIDELOBES