Vol. 99
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-20
Convergence Study of Current Sampling Profiles for Antenna Design in the Presence of Electrically Large and Complex Platforms Using Fit-UTD Hybridization Approach
By
Progress In Electromagnetics Research, Vol. 99, 195-209, 2009
Abstract
Designing antennas in the presence of electrically large and complex structures such as cars or aircrafts has become an important issue for next generation communication systems. Based on the principle of equivalence, the hybridization approach integrating FIT-UTD techniques has shown its superiority in terms of its computing efficiency. In such approach, discrete samplings of continuous electric or magnetic field components resulted from low frequency (LF) sub-domain are required to be converted to the excitation current sources for the high frequency (HF) sub-domain. Thus, the overall accuracy of the calculation results will strongly depend on the similarities between the sampled and original field distributions with both the magnitude and phase involved. In this paper, convergence study of electric and magnetic current sampling is performed. Impact of the different sampling profiles on the overall accuracy is also investigated through numerical examples. Results reveal that convergence of the far-field radiation patterns are closely related to the sampling profiles.
Citation
Heng-Tung Hsu Fang-Yao Kuo Hsi-Tseng Chou , "Convergence Study of Current Sampling Profiles for Antenna Design in the Presence of Electrically Large and Complex Platforms Using Fit-UTD Hybridization Approach," Progress In Electromagnetics Research, Vol. 99, 195-209, 2009.
doi:10.2528/PIER09092404
http://www.jpier.org/PIER/pier.php?paper=09092404
References

1. Chatterjee, D., A selective review of high-frequency techniques in computational electromagnetics, 2007 IEEE Applied Electromagnetics Conference (AEMC 2007), 1-4, Dec. 2007.

2. Mittra, R., "A look at some challenging problems in computational electromagnetics," (invited paper), IEEE Antennas and Propagation Magazine, Vol. 46, No. 5, 18-32, Oct. 2004.
doi:10.1109/MAP.2004.1388823

3. Sarkar, T. K., S. Burintramart, N. Yilmazer, S. Hwang, Y. Zhang, A. De, and M. Salazar-Palma, "A discussion about some of the principles/practices of wireless communication under a maxwellian framework," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3727-3745, Dec. 2006.
doi:10.1109/TAP.2006.886522

4. Diggavi, S., N. AI-Dhahir, A. Stamoulis, and A. R. Calderbank, "Great expectations: The value of spatial diversity in wireless networks," Proc. IEEE, Vol. 92, No. 2, 219-270, Feb. 2004.
doi:10.1109/JPROC.2003.821914

5. Sarkar, T. K., Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for wireless mobile communication," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 51-82, Jun. 2003.
doi:10.1109/MAP.2003.1232163

6. Munteanu, I. and T. Weiland, "RF & microwave simulation with the finite integration technique --- From component to system design," Scientific Computing in Electrical Engineering, Vol. 11, No. 3, 247-260, 2007.
doi:10.1007/978-3-540-71980-9_26

7. Thiele, G. A., Overview of selected hybrid methods in radiating system analysis, Proceedings of the IEEE, Vol. 80, 66-78, Jan. 1992.

8. Han, D.-H., A. C. Polycarpou, and C. A. Balanis, "FEM-based hybrid methods for the analysis of antennas on electrically large structures," 2000 IEEE Radio and Wireless Conference RAWCON 2000, 59-61, Sep. 2000.
doi:10.1109/RAWCON.2000.881855

9. Oguzer, T. and A. Altintas, "Analysis of the nonconcentric reflector anatenna-in-radome system by the iterative reflector antenna and radome interaction," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 57-70, 2007.
doi:10.1163/156939307779391696

10. Zhang, P. F. and S. X. Gong, "Improvement on the forward-backward iterative physical optics algorithm applied to computing the RCS of large open-ended cavities," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 457-469, 2007.
doi:10.1163/156939307779367297

11. Betzios, P. V., I. S. Karanasiou, and N. K. Uzunoglu, "Analysis of a dielectric resonator antenna by applying a combined semi-analytical method and simulation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1983-1994, 2007.
doi:10.1163/156939307783152795

12. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, 368, IEEE Press and Oxford University Press, New York, 1998.

13. Taflove, A., "Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems," Electromagnetic Compatibility, IEEE Transaction, Vol. 22, 191-202, 1980.
doi:10.1109/TEMC.1980.303879

14. Harrington, F. F., "Computation by Moment Methods," Macmillan, 1968.

15. Kouyoumjian, R. G. and P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.

16. Ufimtsev, P. Y., Method of Edge Waves in the Physical Theory of Diffraction, Wiley-IEEE Press, Feb. 16, 2007.

17. Tiberio, R., S. Maci, and A. Toccafondi, "An incremental theory of diffraction: Electromagnetic formulation," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 1, 87-96, Jan. 1995.
doi:10.1109/8.366356

18. Chen, M., Y. Zhang, and C. H. Liang, "Calculation of the field distribution near electrically large nurbs surfaces with physical-optics method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1511-1524, 2005.
doi:10.1163/156939305775701886

19. Zhang, P. F. and S. X. Gong, "Improvement on the forward-backward iterative physical optics algorithm applied to computing the rcs of large open-ended cavities," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 21, 457-469, 2007.
doi:10.1163/156939307779367297

20. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "A time domain incremental theory of diffraction: Scattering of electromagnetic pulsed plane waves," Progress In Electromagnetics Research, Vol. 44, 81-101, 2004.
doi:10.2528/PIER03032001

21. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Scattering of X-waves from a circular disk using a time domain incremental theory of diffraction," Progress In Electromagnetics Research, Vol. 44, 103-129, 2004.
doi:10.2528/PIER03032002

22. Thiele, G. A. and T. H. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 1, Jan. 1975.
doi:10.1109/TAP.1975.1141004

23. Burnside, W., C. Yu, and R. Marhefka, "A technique to combine the geometrical theory of diffraction and the moment method," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 551-558, Jul. 1975.
doi:10.1109/TAP.1975.1141117

24. Fourie, A. and D. Nitch, "SuperNEC: Antenna and indoor-propagation simulation program," IEEE Antennas and Propagation Magazine, Vol. 42, No. 3, 31-48, Jun. 2000.
doi:10.1109/74.848946

25. Davidson, D. B., I. P. Theron, U. Jakobus, F. M. Landstorfer, F. J. C. Meyer, J. Mostert, and J. J. Van Tonder, "Recent progress on the antenna simulation program FEKO ," Communications and Signal Processing, 1998. COMSIG'98. Proceedings of the 1998 South African Symposium on, Vol. 1998, 427-430, Sep. 7-8, 1998.

26. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the e±cient antenna design in the presence of electrically large and complex structures ," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104

27., CST Studio Suite 2009 User's Manual, CST Computation Simulation Technology, www.cst.com.

28., NEC-BSC version 4.2 User's Manual, The Ohio State University, Jun. 2000.