Vol. 44
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
PIER
Vol. 44, 309-333, 2004
download: 103
Radiation Characteristics of an Axially Asymmetrical Slot Antenna on a Perfectly-Conducting Prolate Spheroid Coated with Homogeneous Materials
Ming Zhang Abdel Sebak
The boundary value solution of electromagnetic radiation from an axis-asymmetric slot antenna on a perfectly conducting prolate spheroid coated with a confocal sheath is presented. The electromagnetic fields are expanded in terms of prolate spheroidal vector wave functions. The unknown expansion coefficients are determined from a set of linear equations derived from the application of boundary conditions on the tangential fields' components. Numerical results for radiation patterns and power are presented. It is found that the thickness of the sheath has a significant effect on the radiated fields, and the radiated power is greatly enhanced for certain values of the sheath thickness.
RADIATION CHARACTERISTICS OF AN AXIALLY ASYMMETRICAL SLOT ANTENNA ON A PERFECTLY-CONDUCTING PROLATE SPHEROID COATED WITH HOMOGENEOUS MATERIALS
0000-00-00
PIER
Vol. 44, 287-308, 2004
download: 104
Electromagnetic Analysis of a Non-Invasive 3D Passive Microwave Imaging System
Irene Karanasiou Nikolaos Uzunoglu Anastasios Garetsos
A technique based on the Green's function theory is used in the present research in order to study theoretically the focusing properties of a constructed 3D non-invasive microwave imaging system, consisting of an ellipsoidal conductive cavity and a radiometric receiver. A double layered spherical human head model is placed on one focal point of the elliptical reflector, while the receiving antenna is placed on the other focus. Making use of the reciprocity theorem, the equivalent problem of the coupling between an elementary dipole and the double layered lossy dielectric human spherical model is solved. Numerical results concerning the electric field distribution inside the head model and in the rest of the cavity, at two operating frequencies (1.5 GHz and 3.5 GHz), are presented and compared to the results of an electromagnetic simulator. Finally, phantom experimental results validate the proof of concept and determine the temperature and spatial attributes of the system.
ELECTROMAGNETIC ANALYSIS OF A NON-INVASIVE 3D PASSIVE MICROWAVE IMAGING SYSTEM
0000-00-00
PIER
Vol. 44, 267-286, 2004
download: 99
Impedance Boundary Conditions on a Chiral Film
Pierre Hillion
Using a technique borrowed from Idemen [1] and requiring the Fourier transform of the x, y-components of the electric and magnetic fields, we obtain the impedance boundary conditions for electromagnetic plane waves withh orizontal, vertical and arbitrary polarization incident on a infinite, smooth, chiral film located at z = 0 and deposited on a metallic substrate. As an application, we discuss the scattering of harmonic plane waves and of a finite beam on sucha film.
0000-00-00
PIER
Vol. 44, 249-266, 2004
download: 222
The Surface Impedance of a Homogeneous TM-Type Plane Wave at Skew Incidence Upon an Inclined Anisotropic Half-Space
Glenn Wilson David V. Thiel
General expressions for the electromagnetic fields of homogeneous TM-type plane waves at a skew angle of incidence upon an inclined anisotropic half-space are derived. Previous analyses have only considered fields of homogeneous plane waves in the problems of a laterally anisotropic half-space, and not the problem of an inclined anisotropic half-space. Previous analyses also have assumed that the linear polarization of the incident magnetic field is maintained, regardless of the anisotropy present. The results presented in this paper have shown that while this assumption is valid only for the magnetic field, the electric field is elliptically polarised in the anisotropic half-space. This is demonstrated through a model study and experimental verification at VLF. The solutions obtained converge on the expected values for the special cases presented by other authors.
THE SURFACE IMPEDANCE OF A HOMOGENEOUS TM-TYPE PLANE WAVE AT SKEW INCIDENCE UPON AN INCLINED ANISOTROPIC HALF-SPACE
0000-00-00
PIER
Vol. 44, 231-248, 2004
download: 115
Wide-Angle Radar Target Recognition with Subclass Concept
Dong-Kyu Seo Kyung-Tae Kim In-Sik Choi Hyo-Tae Kim
The range profile is an easily obtainable and promising feature vector for a real-time radar target recognition system. However, the range profile is highly dependent on the aspect angle of a target. This dependency makes the recognition over a wide angular region difficult. In this paper, we propose a classifier with a subclass concept in order to solve this dependency problem. Recognition results with six aircraft models measured at a compact range facility are presented to show the effectiveness of the proposed classifier over a wide-angular region.
WIDE-ANGLE RADAR TARGET RECOGNITION WITH SUBCLASS CONCEPT
PIER
Vol. 44, 217-229, 2004
download: 125
Cooperative Targets Detection and Tracking Range Maximization Using Multimode Ladar/Radar and Transponders
A LAser raDAR (LADAR) system was described in previous papers for detecting and tracking cooperative targets. The LADAR system was optimized to achieve accurate tracking with a high probability of detection and low False Alarm Rate (FAR). However, the operation range was limited to about thirty km's under clear sky conditions and less in low visibility and bad weather conditions. To obtain operation ranges in the order of hundreds km's without affecting tracking accuracy a LADAR/RADAR dual mode system was developed. Moreover, very bulky, expensive and powerful RADAR equipments are required. In this paper, we propose a tactical mobile tracking LADAR/RADAR systems based on a multi-mode LADAR/RADAR combination using active transponders on cooperative targets for predetection and tracking at higher range distances. The optimal solution described in this paper is based on a six-step multimode operation procedure, which starts from an L-band active transponder for maximal distance detection and tracking, and with decreasing distance it switches to an L-band RADAR , Ka-band RADAR with and without active transponder, LADAR with transponder and then to a LADAR without transponder for the final tracking step. Although relatively complicated (6 steps), our proposed solution requires significantly lower power levels and produces less radio interference than the former dualmode system as shown in Table 1.
Cooperative Targets Detection and Tracking Range Maximization Using Multimode LADAR/RADAR and Transponders
PIER
Vol. 44, 197-215, 2004
download: 88
The Proper Current Spectra of an Open Integrated Microstrip Waveguide
Continuous current spectrum of an integrated open waveguide structure is identified as the branch cut contribution to singularity expansion of those currents in the complex axial transform plane. Those singularities in that plane include poles associated with the guiding structure and branch points contributed by layered background environments. The manner in which singularities in background environments manifest themselves as branch points in the complex axial transform plane is reviewed. Based on spectral integral equation formulation, approximate and analytical expression for spatial microstrip current is obtained. That approximation is based on Maxwellian distribution for the transverse current profile. This result is the representation of currents in terms of proper propagation mode spectrum. During the integration around branch cuts, singularities in the transverse transform plane migrate in a complicated manner. The trajectories of this migration are identified and suitably accommodated during the real axis integration in that plane. This overall procedure leads to a decomposition of the total currents into bound modes and continuous spectrum contributions. This representation is validated by real axis integration in the axial transform plane. The quasi TEM characteristic impedance of bound mode is calculated and validated by comparison with well-known empirical formula.
The Proper Current Spectra of an Open Integrated Microstrip Waveguide
PIER
Vol. 44, 169-195, 2004
download: 83
Effective Permittivity of a Statistically Inhomogeneous Medium with Strong Permittivity Fluctuations
Most previous multiple-scattering theories for electromagnetic waves in strongly fluctuating media are limited by the assumption of statistical homogeneity of media. In the paper, a lossy electrically isotropic random medium is considered whose mean permittivity distribution, as well as the multipoint permittivity's moments are invariant under arbitrary rotations about and translations along a fixed symmetry axis, and are inhomogeneous in the radial direction. The goal of the paper is to calculate the effective permittivity operator (EPO) for such medium in the case of strong permittivity fluctuations. For this purpose, one has to eliminate the secular terms from the spectral representation of the-EPO in the basis set of waves suited to a statistically inhomogeneous medium. This is achieved via a renormalization approach which takes into proper account a delta function singularity of the spectral Green's function (rather than that of the spatial Green's function accounted for in the past) referring to a spatially inhomogeneous electrically anisotropic background medium. On this basis, the permittivity matrix of the background medium is explicitly found, a full perturbation series solution and a bilocal approximation for the EPO are derived, the macroscopic properties of the spatially dispersive effective medium are studied, and a perturbative solution for the propagation constants of guided modes of the mean field is obtained.
PIER
Vol. 44, 143-167, 2004
download: 132
Plane Wave Diffraction by Dielectric Loaded Thick-Walled Parallel-Plate Impedance Waveguide
The high frequency diffraction of Ez-polarized plane waves by a dielectric loaded thick-walled parallel-plate impedance waveguide is investigated rigorously by using Fourier transform technique in conjunction with the mode-matching method. Relying upon the image bisection principle, the original problem is splitted up into two simpler ones and each individual boundary-value problem is formulated with this mixed method which gives rise to a scalar Wiener-Hopf equation of the second kind. The solution of each Wiener-Hopf equation contains infinitely many constants satisfying an infinite system of linear algebraic equations. A numeric solution of this system is obtained for various values of the dielectric constant, plate impedances plate thickness, and the distance between the plates through which the effect of these parameters on the diffraction phenomenon is studied.
Plane Wave Diffraction by Dielectric Loaded Thick-Walled Parallel-Plate Impedance Waveguide
0000-00-00
PIER
Vol. 44, 131-142, 2004
download: 85
Numerical Analysis of Two Dimensional Tapered Dielectric Waveguide
Asok De Girish Attimarad
A simple method is presented to obtain the scattering parameters of the two dimensional tapered dielectric waveguide, by discrete approximation to tapering, consisting of series of steps. The two dimensional step discontinuity of the junction of two different dielectric rectangular waveguides has been solved using integral equation arising from the field matching of the discrete modes and the continuous spectrum. Accurate numerical solution has been obtained using Ritz-Galerkin variational approach with appropriate sets of expanding functions. The results in the form of scattering parameters for varying tapered length have been depicted graphically. Computed results from generalized integral expressions are found to be in excellent agreement with results obtained in two-dimensional case. With this method it is possible to design the structure to enlarge the cross section of a mode in a slow and controlled manner.
NUMERICAL ANALYSIS OF TWO DIMENSIONAL TAPERED DIELECTRIC WAVEGUIDE
PIER
Vol. 44, 103-129, 2004
download: 99
Scattering of X-Waves from a Circular Disk Using a Time Domain Incremental Theory of Diffraction
The diffraction and scattering of a first-order ultrawideband TE X-wave by a perfectly conducting circular disk is investigated using an augmented time-domain incremental theory of diffraction. The analysis relies on a pulsed plane wave representation of the incident X-wave. The diffraction and scattering of each constituent pulsed plane wave component is calculated at the observation point. A subsequent azimuthal angular superposition yields the diffracted and scattered field due to the incident X-wave pulse. Making use of the localization and symmetry properties of the incident TE X-wave, a novel four-sensor correlated detection scheme is introduced which is particularly effective in detecting the edges of the scattering disk and has an exceptional resolving power.
Scattering of X-Waves from a Circular Disk Using a Time Domain Incremental Theory of Diffraction
PIER
Vol. 44, 81-101, 2004
download: 95
A Time Domain Incremental Theory of Diffraction: Scattering of Electromagnetic Pulsed Plane Waves
A new formulation of a time domain incremental theory is introduced. This approach is applied to the scattering of a pulsed plane wave incident on a circular disk. It is shown that the scattered field is free from singularities at caustics and exhibits a notable wave structure outside Keller's cone.
A Time Domain Incremental Theory of Diffraction: Scattering of Electromagnetic Pulsed Plane Waves
PIER
Vol. 44, 57-79, 2004
download: 89
Time-Domain and Frequency-Domain Methods Combined in the Study of Open Resonance Structures of Complex Geometry
The paper discusses the methodological questions arising in the study of open electrodynamic structures of resonance quasi optics via time-domain technique. As demonstrated, all of the interesting physical characteristics inherent in these objects (including the objects with various frequency-selective elements) can be obtained through the numerical solution of the relevant model initial bowldaryvalue probhxns. For the first time, a finite difference method equipped with the exact local 'absorbing' conditions on artificial boundaries has been applied for the solution of this kind of open problems. The results of the computational experiments performed have verified the possibility of the efficient selection of oscillations in dispersive open resonators with diffraction gratings, among them the resonators with gratings operating in the quasitotal nonspecular reflection mode.
Time-Domain and Frequency-Domain Methods Combined in the Study of Open Resonance Structures of Complex Geometry
PIER
Vol. 44, 39-55, 2004
download: 108
Analysis of Aperture Antennas Above Lossy Half-Space
This paper studies the radiation properties of aperture antennas above imperfect ground using Discrete Complex Image Method (DCIM). The present method is simple and has high accuracy. In this approach, based on linear approximating a function to an exponential series, equivalent complex images have been obtained. Number, intensity and location of images are obtained using Generalized Pencil Of Function (GPOF) technique. We assume current distribution over the aperture be combination of electric and magnetic currents in vertical and horizontal direction. The obtained results are comparable with analytical computation in limited cases. In spite of Sommerfeld integral based methods, this method is simple with lower computational time.
Analysis of Aperture Antennas above Lossy Half-Space
PIER
Vol. 44, 1-38, 2004
download: 119
A Fast Multipole Method for Embedded Structure in a Stratified Medium
An efficient, static fast multipole method (FMM) based algorithm is presented in this paper for the evaluation of the parasitic capacitance of 3-D microstrip signal lines embedded in stratified dielectric media. The effect of dielectric interfaces on the capacitance matrix is included in the stage of FMM when outgoing multipole expansions are used to form local multipole expansions. The algorithm retains O(N) computational and memory complexity of the free-space FMM, where N is the number of conductor patches.
A Fast Multipole Method for Embedded Structure in a Stratified Medium