Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-08
Experiments with Lanczos Biconjugate a-Orthonormalization Methods for MoM Discretizations of Maxwell's Equations
By
Progress In Electromagnetics Research, Vol. 99, 427-451, 2009
Abstract
In this paper, we consider a novel class of Krylov projection methods computed from the Lanczos biconjugate A-Orthonormalization procedure for the solution of dense complex non-Hermitian linear systems arising from the Method of Moments discretization of Maxwell's equations. We report on experiments on a set of model problems representative of realistic radar-cross section calculations to show their competitiveness with other popular Krylov solvers, especially when memory is a concern. The results presented in this study will contribute to assess the potential of iterative Krylov methods for solving electromagnetic scattering problems from large structures enriching the database of this technology.
Citation
Yan-Fei Jing, Bruno Carpentieri, and Ting-Zhu Huang, "Experiments with Lanczos Biconjugate a-Orthonormalization Methods for MoM Discretizations of Maxwell's Equations," Progress In Electromagnetics Research, Vol. 99, 427-451, 2009.
doi:10.2528/PIER09101901
References

1. Alleon, G., S. Amram, N. Durante, P. Homsi, D. Pogarieloff, and C. Farhat, "Massively parallel processing boosts the solution of industrial electromagnetic problems: High performance out-of-core solution of complex dense systems," Proceedings of the Eighth SIAM Conference on Parallel Computing, M. Heath, V. Torczon, G. Astfalk, P. E. Bjrstad, A. H. Karp, C. H. Koebel, V. Kumar, R. F. Lucas, L. T. Watson, and D. E. Womble (eds.), SIAM Book, Philadelphia, Conference held in Minneapolis, Minnesota, USA, 1997.

2. Bendali, A., "Approximation par elements finis de surface de problemes de diffraction des ondes electro-magnetiques,", Ph.D. thesis, Universite Paris VI, 1984.

3. Bilotti, F. and C. Vegni, "MoM entire domain basis functions for convex polygonal patches," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 11, 1519-1538, 2003.
doi:10.1163/156939303772681398

4. Carpentieri, B., I. S. Duff, and L. Giraud, "Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism," Numerical Linear Algebra with Applications, Vol. 7, No. 7-8, 667-685, 2000.
doi:10.1002/1099-1506(200010/12)7:7/8<667::AID-NLA218>3.0.CO;2-X

5. Carpentieri, B., I. S. Duff, L. Giraud, and M. Magolu monga Made, "Sparse symmetric preconditioners for dense linear systems in electromagnetism," Numerical Linear Algebra with Applications, Vol. 11, 753-771, 2004.
doi:10.1002/nla.345

6. Carpentieri, B., I. S. Duff, L. Giraud, and G. Sylvand, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM J. Scientific Computing, Vol. 27, No. 3, 774-792, 2005.
doi:10.1137/040603917

7. Chew, W. C. and Y. M. Wang, "A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 12, 1633-1639, 1993.
doi:10.1109/8.273306

8. Chew, W. C. and K. F. Warnick, "On the spectrum of the electric field integral equation and the convergence of the moment method," Int. J. Numerical Methods in Engineering, Vol. 51, 475-489, 2001.

9. Danesfahani, R., S. Hatamzadeh-Varmazyar, E. Babolian, and Z. Masouri, "Applying Shannon wavelet basis functions to the Method of Moments for evaluating the Radar Cross Section of the conducting and resistive surfaces," Progress In Electromagnetics Research B, Vol. 8, 257-292, 2008.
doi:10.2528/PIERB08062601

10. Darve, E., "The fast multipole method (i): Error analysis and asymptotic complexity," SIAM J. Numerical Analysis, Vol. 38, No. 1, 98-128, 2000.
doi:10.1137/S0036142999330379

11. Dembart, B. and M. A. Epton, "A 3D fast multipole method for electromagnetics with multiple levels,", Tech. Rep. ISSTECH-97-004, The Boeing Company, Seattle, WA, 1994.

12. Dongarra, J. J., I. S. Duff, D. C. Sorensen, and H. A. Van Der Vorst, Numerical Linear Algebra for High-performance Computers, Software, Environments, and Tools, Vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.

13. Durdos, R., "Krylov solvers for large symmetric dense complex linear systems in electromagnetism: Some numerical experiments,", Working Notes WN/PA/02/97, CERFACS, Toulouse, France, 2002.

14. Ergul, O. and L. Gurel, "Fast and accurate solutions of extremely large integral-equation problems discretized with tens of millions of unknowns," Electron. Lett., Vol. 43, No. 9, 499-500, 2007.
doi:10.1049/el:20070639

15. Ergul, O. and L. Gurel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2335-2345, 2008.
doi:10.1109/TAP.2008.926757

16. Essid, C., M. B. B. Salah, K. Kochlef, A. Samet, and A. B. Kouki, "Spatial-spectral formulation of method of moment for rigorous analysis of microstrip structures," Progress In Electromagnetics Research Letters, Vol. 6, 17-26, 2009.
doi:10.2528/PIERL08112706

17. Barrett, R., et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1995.

18. Fan, Z., D.-Z. Ding, and R.-S. Chen, "The efficient analysis of electromagnetic scattering from composite structures using hybrid CFIE-IEFIE," Progress In Electromagnetics Research B, Vol. 10, 131-143, 2008.
doi:10.2528/PIERB08091606

19. Freund, R. W., "A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems," SIAM J. Scientific Computing, Vol. 14, No. 2, 470-482, 1993.
doi:10.1137/0914029

20. Freund, R. W. and N. M. Nachtigal, "QMR: A quasi-minimal residual method for non-Hermitian linear systems," Numerische Mathematik, Vol. 60, No. 3, 315-339, 1991.
doi:10.1007/BF01385726

21. Freund, R. W. and N. M. Nachtigal, "An implementation of the QMR method based on coupled two-term recurrences," SIAM J. Scientific Computing, Vol. 15, No. 2, 313-337, 1994.
doi:10.1137/0915022

22. Freund, R. W., "Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices," SIAM J. Sci. Stat. Comput., Vol. 13, No. 1, 425-448, 1992.
doi:10.1137/0913023

23. Gan, H. and W. C. Chew, "A discrete BiCG-FFT algorithm for solving 3-D inhomogeneous scatterer problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1339-1357, 1995.

24. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, Boca Raton, FL, 2008.

25. Greenbaum, A., Iterative Methods for Solving Linear Systems, Vol. 17, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1997.

26. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," Journal of Computational Physics, Vol. 73, 325-348, 1987.
doi:10.1016/0021-9991(87)90140-9

27. Hassani, H. R. and M. Jahanbakht, "Method of Moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
doi:10.2528/PIERB08010602

28. Ipsen, I. C. F. and C. D. Meyer, "The idea behind Krylov methods,", Tech. Rep. CRSC-TR97-3, NCSU Center for Research in Scientific Computation-To Appear in American Mathematical Monthly, Jan. 31, 1997.

29. Jing, Y.-F., T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, and B. Carpentieri, "Lanczos-type variants of the COCR method for complex nonsymmetric linear systems," Journal of Computational Physics, Vol. 228, No. 17, 6376-6394, 2009.
doi:10.1016/j.jcp.2009.05.022

30. Lee, J., C.-C. Lu, and J. Zhang, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics,", Tech. Rep. 363-02, Department of Computer Science, University of Kentucky, KY, 2002.

31. Lee, J., C.-C. Lu, and J. Zhang, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," J. Comp. Phys., Vol. 185, 158-175, 2003.
doi:10.1016/S0021-9991(02)00052-9

32. Lee, J., C.-C. Lu, and J. Zhang, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2277-2287, 2004.
doi:10.1109/TAP.2004.834084

33. Li, J. Y., L. W. Li, and Y. B. Gan, "Method of Moments analysis of waveguide slot antennas using the EFIE," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1729-1748, 2005.
doi:10.1163/156939305775696810

34. Lin, J. H. and W. C. Chew, "BiCG-FFT T-matrix method for solving for the scattering solution from inhomogeneous bodies," IEEE Trans. Microwave Theory Tech..

35. Malas, T., O. Ergul, and L. Gurel, "Sequential and parallel preconditioners for large-scale integral-equation problems," Computational Electromagnetics Workshop, 35-43, Izmir, Turkey, Aug. 30-31, 2007.

36. Malas, T. and L. Gurel, "Incomplete LU preconditioning with multilevel fast multipole algorithm for electromagnetic scattering," SIAM J. Scientific Computing, Vol. 29, No. 4, 1476-1494, 2007.
doi:10.1137/060659107

37. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

38. Nilsson, M., "Iterative solution of Maxwell's equations in frequency domain,", Master's thesis, Uppsala University Department of Information Technology.

39. Rahola, J. and S. Tissari, "Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG," Physics in Medicine and Biology, Vol. 47, No. 6, 961-975, 2002.

40. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

41. Saad, Y., "A flexible inner-outer preconditioned GMRES algorithm," SIAM J. Scientific and Statistical Computing, Vol. 14, 461-469, 1993.
doi:10.1137/0914028

42. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing, New York, 1996.

43. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Scientific and Statistical Computing, Vol. 7, 856-869, 1986.

44. Samant, A. R., E. Michielssen, and P. Saylor, "Approximate inverse based preconditioners for 2D dense matrix problems,", Tech. Rep. CCEM-11-96, University of Illinois, 1996.

45. Sertel, K. and J. L. Volakis, "Incomplete LU preconditioner for FMM implementation," Micro. Opt. Tech. Lett., Vol. 26, No. 7, 265-267, 2000.
doi:10.1002/1098-2760(20000820)26:4<265::AID-MOP18>3.0.CO;2-O

46. Sleijpen, G. L. G. and D. R. Fokkema, "BiCGstab(ell) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993.

47. Sogabe, T., "Extensions of the conjugate residual method,", Ph.D. thesis, University of Tokyo, 2006.

48. Sogabe, T., M. Sugihara, and S.-L. Zhang, "An extension of the conjugate residual method to nonsymmetric linear systems," J. Comput. Appl. Math., Vol. 226, 103-113, 2009.
doi:10.1016/j.cam.2008.05.018

49. Song, J. M. and W. C. Chew, "The fast illinois solver code: Requirements and scaling properties," IEEE Computational Science and Engineering, Vol. 5, No. 3, 19-23, 1998.
doi:10.1109/99.714589

50. Song, J. M., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

51. Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee, "Fast illinois solver code (FISC)," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 27-34, 1998.
doi:10.1109/74.706067

52. Sonneveld, P., "CGS, a fast Lanczos-type solver for nonsymmetric linear systems," SIAM J. Scientific and Statistical Computing, Vol. 10, 36-52, 1989.

53. Su, D. Y., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

54. Sylvand, G., "La methode multipole rapide en electromagnetisme: Performances, parallelisation, applications,", Ph.D. thesis, Ecole Nationale des Ponts et Chaussees, 2002.

55. Sylvand, G., "Complex industrial computations in electromagnetism using the fast multipole method," Proceedings of Waves 2003, P. Joly, P. Neittaanmdki, G. C. Cohen, E. Heikkola (eds.), Mathematical and Numerical Aspects of Wave Propagation, 657-662, Springer, 2003.

56. Van Der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Scientific and Statistical Computing, Vol. 13, 631-644, 1992.