Vol. 99
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-10
Analysis of Scattering by Large Inhomogeneous BI-Anisotropic Objects Using AIM
By
Progress In Electromagnetics Research, Vol. 99, 21-36, 2009
Abstract
In this paper, electromagnetic scattering of a plane wave by large inhomogeneous arbitrarily shaped bi-anisotropic objects is solved by Adaptive Integral Method (AIM). Based on Maxwell equations and constitutive relationship for general bi-anisotropic media and using Volume Integral Equations (VIE), the electromagnetic fields are derived as functions of equivalent volume sources. Then the integral equations are discretized using Method of Moments (MoM). Because of the dense matrix property, MoM cannot be used to solve electromagnetic scattering by large objects. Therefore, AIM is adopted to reduce the memory requirement and speed up the solution process. Comparison between AIM and MoM with respect to CPU time and memory requirement is done to show the efficiency of AIM in solving electromagnetic scattering by large objects. Numerical results are obtained for some canonical cases and compared with Mie theory, in which excellent agreement is observed. some new numerical results are also presented for the more general bi-anisotropic material media.
Citation
Li Hu Joshua Le-Wei Li Tat Yeo , "Analysis of Scattering by Large Inhomogeneous BI-Anisotropic Objects Using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204
http://www.jpier.org/PIER/pier.php?paper=09101204
References

1. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Taylor & Francis, 2001.

2. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Backward waves in magnetoelectrically chiral media: Propagation, impedance and negative refraction," Phys. Rev. B, Vol. 75, 155120, 2007.
doi:10.1103/PhysRevB.75.155120

3. Qiu, C. W., H. Y. Yao, S. Zouhdi, L. W. Li, and M. S. Leong, "On the constitutive relations of G-chiral media and the possibility to realize negative-index media," Microwave Opt. Technol. Lett., Vol. 48, No. 12, 2534-2538, 2006.
doi:10.1002/mop.21981

4. Shen, J., "Negative refractive index in gyrotropically magnetoelectric media," Phys. Rev. B, Vol. 73, 045113, 2006.
doi:10.1103/PhysRevB.73.045113

5. Qiu, C. W. and S. Zouhdi, "Comment on `Negative refractive index in gyrotropically magnetoelectric media'," Phys. Rev. B, Vol. 19, 196101, 2007.
doi:10.1103/PhysRevB.75.196101

6. Dong, W., L. Gao, and C. W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

7. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propagat., Vol. 46, 1395-1397, 1998.
doi:10.1109/8.719989

8. Chiu, C. N. and C. G. Hsu, "Scattering and shielding properties of a chiral-coated fiber-reinforced plastic composite cylinder," IEEE Trans. Electromagn. Compat., Vol. 47, 123-130, 2005.
doi:10.1109/TEMC.2004.842107

9. Gao, L., T. H. Fung, K. W. Yu, and C. W. Qiu, "Electromagnetic transparency by coated spheres with radial anisotropy," Phys. Rev. E, Vol. 78, 046609, 2008.
doi:10.1103/PhysRevE.78.046609

10. Lukyanchuk, B. and C. W. Qiu, "Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials," Appl. Phys. A, Vol. 92, 773-776, 2008.
doi:10.1007/s00339-008-4572-5

11. Qiu, C. W., S. Zouhdi, and A. Razek, "Modified spherical wave functions with anisotropy ratio: Application to the analysis of scattering by multilayered anisotropic shells," IEEE Trans. Antennas Propagat., Vol. 55, No. 12, 3515-3523, 2007.
doi:10.1109/TAP.2007.910491

12. Hanson, G. W., "A numerical formulation of dyadic greens functions for planar bianisotropic media with application to printed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 1, 144-151, 1996.
doi:10.1109/22.481396

13. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.

14. Tarento, R.-J., K.-H. Bennemann, P. Joyes, and J. Van de Walle, "Mie scattering of magnetic spheres," Phys. Rev. E, Vol. 69, No. 2, 026606, 2004.
doi:10.1103/PhysRevE.69.026606

15. Geng, Y.-L., X.-B.Wu, L.-W. Li, and B.-R. Guan, "Mie scattering by a uniaxial anisotropic sphere," Phys. Rev. E, Vol. 70, No. 5, 056609, 2004.
doi:10.1103/PhysRevE.70.056609

16. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propagat., Vol. 53, 3374-3384, 2005.
doi:10.1109/TAP.2005.856328

17. Valor, L. and J. Zapata, "An effcient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic materials," IEEE Trans. Microwave Theory Tech., Vol. 44, 291-296, 1996.
doi:10.1109/22.481579

18. Bilotti, F., A. Toscano, and L. Vegni, "Fem-bem formulation for the analysis of cavity-backed patch antennas on chiral substrates," IEEE Trans. Antennas Propagat., Vol. 51, 306-311, 2003.
doi:10.1109/TAP.2003.809076

19. Schaubert, D. H., D. R. Wilton, and A. W. Gilsson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

20. Su, C. C., "Electromagnetic scattering by a dielectric body with arbitrary inhomogeneity and anisotropy," IEEE Trans. Antennas Propagat., Vol. 37, 384-389, 1989.
doi:10.1109/8.18735

21. Hasanovic, M., C. Mei, J. Mautz, and E. Arvas, "Scattering from 3-D inhomogeneous chiral bodies of arbitrary shape by the Method of Moments," IEEE Trans. Antennas Propagat., Vol. 55, 1817-1825, 2007.
doi:10.1109/TAP.2007.898590

22. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1252, 1996.
doi:10.1029/96RS02504

23. Nie, X.-C., N. Yuan, and L.-W. Li, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering ," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, 2002.
doi:10.1163/156939302X00697

24. Ewe, W. B., L. W. Li, and M. S. Leong, "Solving mixed dielectric/conducting scattering problem using adaptive integral method," Progress In Electromagnetics Research, Vol. 46, 143-163, 2004.
doi:10.2528/PIER03091001

25. Nie, X. C., N. Yuan, L. W. Li, T. S. Yeo, and Y. B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601

26. Ewe, W. B., E. P. Li, H. S. Chu, and L. W. Li, "AIM analysis of electromagnetic scattering by arbitrarily shaped magnetodielectric object," IEEE Trans. Antennas Propagat., Vol. 55, No. 7, 2073-2079, 2007.
doi:10.1109/TAP.2007.900263

26. Geng, Y.-L., X.-B. Wu, and L.-W. Li, "Characterization of electromagnetic scattering by a plasma anisotropic spherical shell," IEEE Antennas and Wireless Propagat. Lett., Vol. 3, 100-103, 2004.
doi:10.1109/LAWP.2004.830018

28. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, 1974.
doi:10.1016/0009-2614(74)85144-4