Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-19
Ideally Hard Struts to Achieve Invisibility
By
Progress In Electromagnetics Research, Vol. 99, 179-194, 2009
Abstract
In this work, ideally hard struts with different cross sections are analyzed. Firstly, the characterization of the invisibility of a given object in terms of an equivalent blockage width is discussed. Then, the effect of the incidence angle on struts for reducing electromagnetic blockage using the same ideally hard cylinders is analyzed. It is shown that the variation of incidence angle in azimuth is very sensitive in terms of blockage for both polarizations. Finally, design charts for ideally hard struts which reduce blockage simultaneously for TE and TM cases are presented. This can be used to define some performance goals for final realized struts.
Citation
Jose-Manuel Fernandez Gonzalez, Eva Rajo-Iglesias, and Manuel Sierra-Castaner, "Ideally Hard Struts to Achieve Invisibility," Progress In Electromagnetics Research, Vol. 99, 179-194, 2009.
doi:10.2528/PIER09102603
References

1. Fante, R. L. and M. T. McCornack, "Reflection properties of the salisbury screen," IEEE Trans. on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, October 1988.
doi:10.1109/8.8632

2. Ward, J. and Towards invisible glass, Vacuum, Vol. 22, 369-375, 1972.
doi:10.1016/0042-207X(72)91655-7

3. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Physical Review E, Vol. 72, 016623, July 2005.

4. Schurig, D., J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, "Metmaterial elecromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, November 2006.
doi:10.1126/science.1133628

5. Nicorovici, N., G. Milton, R. McPhedern, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Optics Express, Vol. 15, No. 10, 6314-6323, May 2007.
doi:10.1364/OE.15.006314

6. Alitalo, P., O. Luukkonen, L. Jylh, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields ," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 2, 416-424, February 2008.
doi:10.1109/TAP.2007.915469

7. Alu, A. and N. Engheta, "Cloaking and transparency for collections of particles with metamaterial and plasmonic covers," Optics Express, Vol. 15, No. 12, 7578-7590, June 2007.
doi:10.1364/OE.15.007578

8. Xi, S., H. Chen, B. I.Wu, and J. A. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 131-133, March 2009.
doi:10.1109/LMWC.2009.2013677

9. Ivsic, B., Z. Sipus, and S. Hrabar, "Analysis of uniaxial multilayer cylinders used for invisible cloak realization," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 5, 1521-1527, May 2009.
doi:10.1109/TAP.2009.2016695

10. Kildal, P. S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 28, No. 10, 1537-1544, October 1990.

11. Kildal, P. S. and A. A. Kishk, "EM modeling of surfaces with stop or go characteristics --- Artificial magnetic conductors and soft and hard surfaces," Applied Computational Electromagnetics Society Journal, Vol. 18, No. 1, 32-40, October 2003.

12. Kildal, P. S., E. Olsen, and J. A. Aas, "Losses, sidelobes and cross-polarization caused by feed-support struts in reflector antennas: Design curves," IEEE Trans. on Antennas and Propagation, Vol. 36, No. 2, 182-190, February 1988.
doi:10.1109/8.1095

13. Kildal, P. S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 11, 1509-1520, November 1996.
doi:10.1109/8.542076

14. Kay, A. F., "Electrical design of metal space frame radomes," IEEE Trans. on Antennas and Propagation, Vol. 13, No. 2, 188-202, March 1965.
doi:10.1109/TAP.1965.1138397

15. Rusch, W. V. T., J. Appel-Hansen, C. A. Klein, and R. Mittra, "Forward scattering from square cylinders in the resonance region with application to aperture blockage," IEEE Trans. on Antennas and Propagation, Vol. 24, No. 2, 182-189, March 1976.
doi:10.1109/TAP.1976.1141307

16. Ishimaru, A., "Electromagnetic Wave Propagation, Radiation and Scattering," Prentice-Hall, 1991.

17. Kishk, A. A. and P. S. Kildal, "Asymptotic boundary conditions for strip-loaded scattterers applied to circular dielectric cylinders under oblique incidence," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 1, 51-56, January 1997.
doi:10.1109/8.554240

18. Rajo-Iglesias, E., J. M. Fernandez, and P. S. Kildal, "Blockage reduction of rhombic cylinders using meta-surfaces," Proc. of IEEE AP-S International Symposium 2008, 1-4, July 2008.

19. Jacobsson, P., L. Yueqiang, and T. Rylander, "Reduction of total scattering from antenna struts using shape optimization," RVK 05-Radiovetenskap och Kommunikation, 2005.