1. Society, A. C., "Cancer facts and figures 2008," American Cancer Society, 2008. Google Scholar
2. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, National Academy Press, 2001.
3. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601 Google Scholar
4. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radio Graphics, Vol. 18, 1137-1154, 1998. Google Scholar
5. MacDonald, F. and C. H. J. Ford, Molecular Biology of Cancer, BIOS Scientific Publishers Limited, 1997.
6. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
7. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, Sep. 2001.
doi:10.1109/10.942596 Google Scholar
8. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1841-1853, Nov. 2000.
doi:10.1109/22.883861 Google Scholar
9. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed array microwave imaging Part II --- Imaging results ," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
doi:10.1109/42.781016 Google Scholar
10. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatsis, "Two dimensional analysis of a microwave flat antenna array for breast cancer tomography," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 8, 1413-1415, Aug. 2000.
doi:10.1109/22.859490 Google Scholar
11. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging 1 --- 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, Jan. 2002.
doi:10.1109/22.981256 Google Scholar
12. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal Mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016 Google Scholar
13. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 7, 2317-2323, Jul. 2005.
doi:10.1109/TMTT.2005.850444 Google Scholar
14. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 4, 1921-1927, Jun. 2006.
doi:10.1109/TMTT.2006.871994 Google Scholar
15. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Trans. Antennas and Propagat., Vol. 47, 783-791, May 1999.
doi:10.1109/8.774131 Google Scholar
16. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
17. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, Nov. 1999.
doi:10.1109/75.808040 Google Scholar
18. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887-892, Mar. 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
19. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: Experimental concept evaluation," IEEE AP-S International Symposium and USNC/URSI Radio Science Meeting, Vol. 1, 819-822, Jun. 2002. Google Scholar
20. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627 Google Scholar
21. Li, X., E. J. Bond, B. D. V. Veen, and S. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, Feb. 2005.
doi:10.1109/MAP.2005.1436217 Google Scholar
22. Craddock, I. J., R. Nilavalan, J. Leendertz, A. Preece, and R. Benjamin, "Experimental investigation of real aperture synthetically organised radar for breast cancer detection," IEEE AP-S Inter. Sym., Vol. 1B, 179-182, 2005. Google Scholar
23. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia, A. Bretones, and R. Martin, "A rotating array of antennas for confocal microwave breast imaging," Microw. Opt. Technol. Lett., Vol. 39, No. 4, 307-311, 2003.
doi:10.1002/mop.11199 Google Scholar
24. De Rodriguez, M. E., M. Vera-Isasa, and V. Del Rio, "3-D microwave breast tumor detection: Study of system performance," IEEE Trans. Biomedical Eng., Vol. 55, No. 12, 2772-2777, Dec. 2008.
doi:10.1109/TBME.2008.2003082 Google Scholar
25. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. Van-Veen, "Microwave imaging via space-time beamforming for the early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1163/156939303322235860 Google Scholar
26. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., Vol. 51, No. 8, 1690-1705, Aug. 2003.
doi:10.1109/TAP.2003.815446 Google Scholar
27. Joines, W., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1993. Google Scholar
28. Sha, L., E. R. Ward, and B. Stroy, "A review of the dielectric properties of normal and malignant breast tissue," Proceedings of the IEEE SoutheastCon, 457-462, Apr. 2002. Google Scholar
29. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374 Google Scholar
30. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014 Google Scholar
31. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
32. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
33. Hagness, S. C., A. Taflove, M. Popovic, and J. E. Bridges, Microwave Discrimination between Malignant and Benign Breast Tumors, Patent: 6421550, 2002.
34. Joines, W. T., "Frequency-dependent absorption of electromagnetic energy in biological tissue," IEEE Trans. Biomedical Eng., Vol. 31, No. 1, 17-20, 1984.
doi:10.1109/TBME.1984.325365 Google Scholar
35. Pethig, R., "Dielectric properties of biological materials: Biophysical and medical applications," IEEE Transactions on Electrical Insulation, Vol. E1-E1, No. 5, 453-474, 1984.
doi:10.1109/TEI.1984.298769 Google Scholar
36. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissue at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1984. Google Scholar
37. Nilavalan, R., A. Gbedemah, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," IET Electronic Letters, Vol. 39, No. 25, 1787-1789, Dec. 2003.
doi:10.1049/el:20031183 Google Scholar
38. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE rans. Biomedical Eng., in press. Google Scholar
39. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, 1854-1863, Nov. 2000.
doi:10.1109/22.883862 Google Scholar
40. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomedical Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058 Google Scholar
41. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," International Journal of Antennas and Propagation, Vol. 2008, 2008. Google Scholar
42. Fear, E. C. and M. Okoniewski, "Confocal microwave imaging for breast tumor detection: Application to a hemispherical breast model," Microwave Symposium Digest, 2002 IEEE MTT-S International, Vol. 3, 1759-1762, 2002. Google Scholar
43. Xie, Y., B. Guo, J. Li, and P. Stoica, "Novel multistatic adaptive microwave imaging methods for early breast cancer detection," EURASIP J. Appl. Si. P., Vol. 2006, Article ID: 91961, 1-13, 2006.
doi:10.1051/epjap:2006101 Google Scholar
44. Klemm, M., I. J. Craddock, J. Leendertz, A. W. Preece, and R. Benjamin, "Breast cancer detection using symmetrical antenna array," Proceedings of the 2nd European Conference on Antennas and Propagation (EuCAP'07), 1-5, Nov. 2007. Google Scholar
45. Craddock, I. J., M. Klemm, J. Leendertz, A. W. Preece, and R. Benjamin, "Development and application of a UWB radar system for breast imaging," Antennas and Propagation Conference, 2008. LAPC 2008. Loughborough, 24-27, 2008.
doi:10.1109/LAPC.2008.4516856 Google Scholar
46. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Antenna configurations for ultra wide band radar detection of breast cancer," SPIE BIOS West, Vol. 7169, Jan. 2009. Google Scholar
47. Gabriel, C. and S. Gabriel. (Last accessed: Sept. 2009) Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, [Online]. Available: http://niremf.ifac.cnr.it/tissprop/.
48. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiplyand-sum image reconstruction algorithm," IEEE Trans. Biomedical Eng., Vol. 55, No. 6, 1697-1704, June 2008.
doi:10.1109/TBME.2008.919716 Google Scholar