1. Jin, J., The Finite Element Method in Electromagnetics, Wiley, 2007.
2. Monk, P., Finite Element Method for Maxwells Equations, Oxford, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001
3. Silvester, P. and R. Ferrari, "Finite Elements for Electrical Engineers," Cambridge University Press, 1996. Google Scholar
4. Andersen, L. and J. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE. Trans. Antennas Propagat., Vol. 47, No. 1, 112-120, 1999.
doi:10.1109/8.753001 Google Scholar
5. Volakis, J., T. Ozdemir, and J. Gong, "Hybrid finite-element methodologies for antennas and scattering," IEEE. Trans. Antennas Propagat., Vol. 45, No. 3, 493-507, 1997.
doi:10.1109/8.558664 Google Scholar
6. Tonti, E., "Finite formulation of the electromagnetic fiel," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101 Google Scholar
7. Polycarpou, A., P. Tirkas, and C. Balanis, "The finite-element method for modeling circuits and interconnects for electronic packaging," IEEE Trans. Microw. Theory Techn., Vol. 45, No. 10, 1868-1874, 1997.
doi:10.1109/22.641784 Google Scholar
8. Lee, J., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE. Trans. Antennas Propagat., Vol. 45, No. 3, 430-442, 1997.
doi:10.1109/8.558658 Google Scholar
9. Jiao, D. and J. Jin, "A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations," IEEE. Trans. Antennas Propagat., Vol. 50, No. 11, 1624-1632, 2002.
doi:10.1109/TAP.2002.803965 Google Scholar
10. Petersson, L. and J. Jin, "A three-dimensional time-domain finite-element formulation for periodic structures," IEEE. Trans. Antennas Propagat., Vol. 54, No. 1, 12-19, 2006.
doi:10.1109/TAP.2005.861547 Google Scholar
11. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004 Google Scholar
12. Faghihi, F. and H. Heydari, "A combination of time domain finite element-boundary integral and with time domain physical optics for calculation of electromagnetic scattering of 3-D structures ," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206 Google Scholar
13. Mur, G., "The finite-element modeling of three-dimensional time-domain electromagnetic fields in strongly inhomogeneous media," IEEE Trans. Magn., Vol. 28, No. 2, 1130-1133, 1992.
doi:10.1109/20.123883 Google Scholar
14. Gedney, S. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microw. Guided Wave Lett., Vol. 5, No. 10, 332-334, 1995.
doi:10.1109/75.465046 Google Scholar
15. Tsai, H., Y. Wang, and T. Itoh, "An unconditionally stable extended (USE) finite-element time-domain solution of active nonlinear microwave circuits using perfectly matched layers," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 10, 2226-2232, 2002.
doi:10.1109/TMTT.2002.803442 Google Scholar
16. Jiao, D., J. Jin, E. Michielssen, and D. Riley, "Time-domain finiteelement simulation of three-dimensional scattering and radiation problems using perfectly matched layers ," IEEE. Trans. Antennas Propagat., Vol. 51, No. 2, 296-305, 2003.
doi:10.1109/TAP.2003.809096 Google Scholar
17. Cangellaris, A. and Point-matched time, "Point-matched time domain finite element methods for electromagnetic radiation and scattering," IEEE. Trans. Antennas Propagat., Vol. 35, No. 10, 1160-1173, 1987.
doi:10.1109/TAP.1987.1143981 Google Scholar
18. Wong, M., O. Picon, and V. Fouad Hanna, "A finite element method based on whitney forms to solve Maxwell equations in the time domain," IEEE Trans. Magn., Vol. 31, No. 3, 1618-1621, 1995.
doi:10.1109/20.376343 Google Scholar
19. Feliziani, M. and F. Maradei, "An explicit-implicit solution scheme to analyze fast transients by finite elements," IEEE Trans. Magn., Vol. 33, No. 2, 1452-1455, 1997.
doi:10.1109/20.582533 Google Scholar
20. Donderici, B. and F. Teixeira, "Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 1, 113-120, 2008.
doi:10.1109/TMTT.2007.912217 Google Scholar
21. Donderici, B. and F. Teixeira, "Conformal perfectly matched layer for the mixed finite element time-domain method," IEEE. Trans. Antennas Propagat., Vol. 56, No. 4, 1017-1026, 2008.
doi:10.1109/TAP.2008.919215 Google Scholar
22. Yioultsis, T., N. Kantartzis, C. Antonopoulos, and T. Tsiboukis, "A fully explicit whitney element-time domain scheme with higher order vector ¯nite elements for three-dimensional high frequency problems ," IEEE Trans. Magn., Vol. 34, No. 5, 3288-3291, 1998.
doi:10.1109/20.717772 Google Scholar
23. Guillouard, K., M. Wong, V. Fouad Hanna, and J. Citerne, "A new global time-domain electromagnetic simulator of microwave circuits including lumped elements based on finite-element method," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 10, 2045-2049, 1999.
doi:10.1109/22.795085 Google Scholar
24. Sekine, T. and H. Asai, "Mixed finite element time domain method based on iterative leapfrog scheme for fast simulations of electromagnetic problems," IEEE International Symposium on Electromagnetic Compatibility (EMC), 2011, 596-601, 2011.
doi:10.1109/ISEMC.2011.6038381 Google Scholar
25. Cohen, G. and M. Durufle, "Non spurious spectral-like element methods for Maxwell's equations," J. Comput. Math., Vol. 25, 282-300, 2007. Google Scholar
26. Winkler, J. R. and J. B. Davies, "Elimination of spurious modes in finite element analysis," J. Computat. Phys., Vol. 56, 1-14, 1984.
doi:10.1016/0021-9991(84)90079-2 Google Scholar
27. Tobon, L., J. Chen, and Q. H. Liu, "Spurious solutions in mixed finite element method for Maxwell's equations: Dispersion analysis and new basis functions," J. Computat. Phys., Vol. 230, No. 19, 7300-7310, 2011.
doi:10.1016/j.jcp.2011.05.035 Google Scholar
28. Chen, J., L. Tobon, M. Chai, J. Mix, and Q. H. Liu, "Effcient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures ," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 1, No. 9, 1438-1446, 2011.
doi:10.1109/TCPMT.2011.2162726 Google Scholar
29. Chen, J. and Q. H. Liu, "A non-spurious vector spectral element method for Maxwell's equations," Progress In Electromagnetics Research, Vol. 96, 205-215, 2009.
doi:10.2528/PIER09082705 Google Scholar
30. Cangellaris, A. and H. Wu, "Domain decomposition and multi-scale finite elements for electromagnetic analysis of integrated electronic systems ," IEEE International Symposium on Electromagnetic Compatibility (EMC), 2005, Vol. 3, 817-822, 2005. Google Scholar
31. Gedney, S., T. Kramer, C. Luo, J. Roden, R. Crawford, B. Guernsey, J. Beggs, and J. Miller, "The discontinuous Galerkin finite element time domain method (DGFETD)," IEEE International Symposium on Electromagnetic Compatibility (EMC), 2008 , 1-4, 2008.
doi:10.1109/ISEMC.2008.4652146 Google Scholar
32. Lu, T., W. Cai, and P. Zhang, "Discontinuous Galerkin time domain method for gpr simulation in dispersive media," IEEE Trans. Seosci. Remote Sens., Vol. 43, No. 1, 72-80, 2005.
doi:10.1109/TGRS.2004.838350 Google Scholar
33. Gan, H. and D. Jiao, "A time-domain layered finite element reduction recovery (LAFE-RR) method for high-frequency VLSI design," IEEE. Trans. Antennas Propagat., Vol. 55, No. 12, 3620-3629, 2007.
doi:10.1109/TAP.2007.910473 Google Scholar
34. Canouet, N., L. Fezoui, and S. Piperno, "Discontinuous Galerkin time-domain solution of Maxwell's equations on locally-refined nonconforming cartesian grids ," COMPEL: Int. J. for Computation and Maths. in Electrical and Electronic Eng., Vol. 24, No. 4, 1381-1401, 2005.
doi:10.1108/03321640510615670 Google Scholar
35. Shi, Y. and C.-H. Liang, "Simulations of the left-handed medium using discontinuous Galerkin method based on the hybrid domains ," Progress In Electromagnetics Research, Vol. 63, 171-191, 2006.
doi:10.2528/PIER06050803 Google Scholar
36. Nedelec, J., "A new family of mixed finite elements in R3," Numerische Mathematik, Vol. 50, No. 1, 57-81, 1986.
doi:10.1007/BF01389668 Google Scholar
37. Nedelec, J., "Mixed finite elements in R3," Numerische Mathematik, Vol. 35, No. 3, 315-341, 1980.
doi:10.1007/BF01396415 Google Scholar
38. Peterson, A., S. Ray, and R. Mittra, , Computational Methods for Electromagnetics, Vol. 24, IEEE Press, 1998.
39. Fan, G.-X. and Q. H. Liu, "A strongly well-posed PML in lossy media," IEEE Antennas Wireless Propagat. Lett., Vol. 2, No. 7, 97-100, 2003. Google Scholar
40. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave and Optical Technology Letters, Vol. 15, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 Google Scholar