Vol. 143
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-02-10
Developing One-Dimensional Electronically Tunable Microwave and Millimeter-Wave Components and Devices Towards Two-Dimensional Electromagnetically Reconfigurable Platform (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 143, 821-848, 2013
Abstract
An overview of state-of-the-art frequency tunable technologies in the realization of tunable radio frequency (RF) and microwave tunable circuits is presented with focus on filter designs. Those enabling techniques and materials include semiconductors, micro-electro-mechanical systems (MEMS), ferroelectric and ferromagnetic materials. Various performance indicators of one-dimensional tunable filters are addressed in terms of tunability, losses, signal integrity and other aspects. Fundamental limitations of the classical onedimensional tuning method are discussed, which makes use of only one type of tunable elements such as either electric or magnetic tuning/controlling of circuit parameters. Requirements of simultaneous electric and magnetic two-dimensional tuning techniques are highlighted for achieving an unprecedented and advantageous wider modal tuning. It is believed that this emerging scheme will lead its way in the realization of future highly efficient and tunable RF and microwave components and devices.
Citation
Sulav Adhikari Ke Wu , "Developing One-Dimensional Electronically Tunable Microwave and Millimeter-Wave Components and Devices Towards Two-Dimensional Electromagnetically Reconfigurable Platform (Invited Paper)," Progress In Electromagnetics Research, Vol. 143, 821-848, 2013.
doi:10.2528/PIER13123006
http://www.jpier.org/PIER/pier.php?paper=13123006
References

1. Torregrosa-Penalva, G., G. Lopez-Risueno, and J. I. Alonso, "A simple method to design wide-band electronically tunable combline filters ," IEEE Trans. on Microw. Theory and Techn., Vol. 50, No. 1, 2002.
doi:10.1109/22.981262

2. Norwood, M. H. and E. Shatz, "Voltage variable capacitor tuning: A review," Proceedings of the IEEE, Vol. 56, No. 5, 1968.
doi:10.1109/PROC.1968.6408

3. Chandler, S. R., I. C. Hunter, and J. G. Gardiner, "Active varactor tunable bandpass filter," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 3, 1993.
doi:10.1109/75.205668

4. Hunter, I. C. and J. D. Rhodes, "Electronically tunable microwave bandpass filters," IEEE Trans. on Microw. Theory and Techn., 30- 9, 1982.

5. Makimoto, M. and M. Sagawa, "Varactor tuned bandpass filters using microstrip-line ring resonators," IEEE MTT-S International Microwave Symposium Digest, 411-414, 1986.
doi:10.1109/MWSYM.1986.1132206

6. Chung, M.-K., I.-S. Kim, and S.-W. Yun, "Varactor-tuned hairpin bandpass filter with an attenuation pole," Asia Pacific Microwave Conf., 2005.

7. Sanchez-Renedo, M., R. Gomez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, "Tunable combline filter with continuous control of center frequency and bandwidth ," IEEE Trans. on Microw. Theory and Techn., Vol. 53, No. 1, 2005.
doi:10.1109/TMTT.2004.839309

8. Musoll-Anguiano, C., I. Llamas-Garro, Z. Brito-Brito, L. Pradell, and A. Corona-Chavez, "Fully adaptable band-stop filter using varactor diode," Microwave and Optical Technological Letters, Vol. 52, 2002.

9. Swartz, G. A., D. W. Wern, and P. H. Robinson, "Large-area varactor diode for electrically tunable, high-power UHF bandpass filter ," IEEE Trans. on Electron Devices, Vol. 27, No. 11, 1980.
doi:10.1109/T-ED.1980.20163

10. Yu, F. L., X. Y. Zhang, and Y. B. Zhang, "Frequency-tunable bandpass filters with constant absolute bandwidth and improved linearity," Progress In Electromagnetics Research Letters, Vol. 33, 131-140, 2012.
doi:10.2528/PIERL12061006

11. Lugo, C. and J. Papapolymerou, "Electronic switchable bandpass filter using PIN diodes for wireless low cost system-on-a-package applications," IEE Proceedings on Microwave Antenna and Propagation, Vol. 151, No. 6, 2004.
doi:10.1049/ip-map:20040897

12. Brito-Brito, Z., I. Llamas-Garro, L. Pradella-Cara, and A. Corona-Chavez, "Microstrip switchable bandstop filter using PIN diodes with precise frequency and bandwidth control," Proceedings of European Microwave Week (EUMA), 1707-1711, 2008.

13. Karim, M. F., Y. X. Guo, Y.-X. Chen, and L. C. Ong, "Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes," IEEE MTT-S International Microwave Symposium Digest, 509-512, 2009.

14. Armendariz, M., V. Sekar, and K. Entesari, "Tunable SIW bandpass filters with PIN diodes," Proceedings of European Microwave Conference, 830-833, 2010.

15. Sirci, S., J. D. Martinez, and V. E. Boria, "Low-loss 3-bit tunable SIW filter with PIN diodes and integrated bias network ," Proceedings of the European Microwave Conference, 1211-1214, 2013.

16. Bakhit, A. A. and P. W. Wong, "Switchable microwave band-stop to all pass ¯lter using stepped impedance resonator," Progress In Electromagnetics Research B, Vol. 52, 99-115, 2013.
doi:10.2528/PIERB13033102

17. Lin, J. and T. Itoh, "Tunable active bandpass filters using three-terminal MESFET varactors," Proceedings of IEEE MTT-S International Microwave Symposium, Vol. 2, 1-5, 1992.

18. Torregrosa-Penalva, G., G. Lopez-Risueno, and J. I. Alonso, "A simple method to design wide-band electronically tunable combline filters," IEEE Trans. on Microw. Theory and Techn., Vol. 50, No. 1, 172-177, 2002.
doi:10.1109/22.981262

19. Pantoli, L., V. Stornelli, and G. Leuzzi, "A single-transistor tunable filter for bluetooth applications," Proceedings of European Microwave Integrated Circuits Conference, 889-892, 2012.

20. Siegel, C., V. Zieglerl, U. Prechtel, B. Schonlinner, and H. Schumacher, "A Ka-band RF-MEMS phase shifter approach based on a novel dual-state microstrip line," Proceedings of European Microwave Conference, 1221-1224, 2007.

21. Unlu, M., S. Demir, and T. Akin, "A 15--40-GHz frequency reconfigurable RF MEMS phase shifter," IEEE Trans. on Microw. Theory and Techn., Vol. 1, 2865-2877, 2013.
doi:10.1109/TMTT.2013.2271995

22. Lucyszyn , S. and S. Pranonsatit, "RF MEMS for antenna applications ," European Conference on Antennas and Propagation, 1988-1992, 2013.

23. Ocera, A., P. Farinelli, P. Mezzanotte, R. Sorrentino, B. Margesin, and F. Gaicomozzi, "A novel MEMS-tunable hairpin line filter on silicon substrate," Proceedings of European Microwave Conference, 803-806, 2006.
doi:10.1109/EUMC.2006.281041

24. Marsan, E., J. Gauthier, M. Chaker, and K. Wu, "Tunable microwave device: Status and perspective," IEEE-NEWCAS Conference, 279-282, 2005.

25. Gentili, F., L. Pelliccia, F. Cacciamani, P. Farinelli, and R. Sorrentino, "RF MEMS bandwidth-reconfigurable hairpin filters," Proceedings of Asia Pacific Microw. Conf., 735-737, 2012.

26. Chan, K. Y., S. Fouladi, R. Ramer, and R. R. Mansour, "RF MEMS switchable interdigital bandpass filter," IEEE Microwave and Wireless Comp. Lett., Vol. 22, No. 1, 2012.

27. Sekar, V., M. Armendariz, and K. Entesari, "A 1.2--1.6 GHz substrate-integrated-waveguide RF MEMS tunable filter," IEEE Trans. on Microw. Theory and Techn., Vol. 59, No. 4, 2011.

28. Pillans, B., A. Malczweski, R. Allison, and J. Brank, "6--15 GHz RF MEMS tunable filters," IEEE MTT-S International Microwave Symposium Digest, 919-922, 2005.

29. Entesari, K., K. Obeidat, A. R. Brown, and G. M. Rebeiz, "A 25--75-MHz RF MEMS tunable filter," IEEE Trans. on Microw. Theory and Techn., Vol. 55, No. 11, 2007.

30. Minin, I., Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications, 159-184, InTech, , 2010.
doi:10.5772/212

31. Park, J.-H., S. Lee, J.-M. Kim, H.-T. Kim, Y. Kwon, and Y.-K. Kim, "Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches," Journal of Microelectromechanical Systems, Vol. 14, No. 3, 2005.

32. Fourm, E., et al., "Bandwidth and central frequency control on tunable bandpass filter by using MEMS cantilevers," IEEE MTT-S International Microwave Symposium Digest, 523-526, 2003.

33. Park, S.-J., K.-Y. Lee, and G. M. Rebeiz, "Low-loss 5.15--5.7 GHz RF MEMS switchable filter for wireless LAN applications," IEEE Trans. on Microw. Theory and Techn., Vol. 54, No. 11, 2006.

34. Yan, W. D. and R. R. Mansour, "Tunable dielectric resonato bandpass filter with embedded MEMS tuning elements," IEEE Trans. on Microw. Theory and Techn., Vol. 55, No. 1, 2007.

35. Kim, J.-M., , et al., "Digitally frequency-controllable dual-band WLAN filters using micro-machined frequency-tuning elements," IEEE Intern. Conf. on Micro. Electro. Mechanical Systems, 158-161, 2006.

36. Shim, Y., J. Ruan, Z. Wu, and M. Rais-Zadeh, "An integrated RF MEMS tunable filter," IEEE MTT-S International Microwave Symposium Digest, 523-526, 2003.

37. Kim, J.-M., S. Lee, J.-H. Park, and J.-M. Kim, "Low loss K-band tunable bandpass filter using micromachined variable capacitors," Digest of Technical Papers in Solid-State Sensors, Actuators and Microsystems, Vol. 1, 1071-1074, 2005 .

38. Abbaspour, T., L. Dussopt, and G. M. Rebeiz, "Miniature and tunable filters using MEMS capacitors," IEEE Trans. on Microw. Theory and Techn., Vol. 51, No. 7, 1878-1885, 2003.
doi:10.1109/TMTT.2003.814317

39. Zhang, N., Z. Deng, and F. Sen, "CPW tunable band-stop filter using hybrid resonator and employing RF MEMS capacitors," IEEE Trans. on Electron Devices, Vol. 60, No. 8, 2013.

40. Ouaddari, M., S. Delprat, F. C. Vidal, C. Mohamed, and K. Wu, "Microwave characterization of ferroelectric thin-film materials," IEEE Trans. on Microw. Theory and Techn., Vol. 53, No. 4, 1390-1397, 2005.
doi:10.1109/TMTT.2005.845759

41. Vendik, I., O. Vendik, V. Pleskachev, A. Svishvhev, and R. Wordenweber , "Design of tunable ferroelectric filters with a constant fractional bandwidth," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1461-1464, 2001.

42. Nath , J., D. Ghosh, J.-P. Maria, A. I. Kingon, W. Fathelbab, P. D. Franzon, and M. B. Steer, "An electronically tunable microstrip bandpass filter using thin-film Barium-Strontium-Titanate (BST) varactors," IEEE Trans. on Microw. Theory and Techn., Vol. 53, No. 9, 2005.

43. Papapolymerou, J., C. Lugo, Z. Zhiyong, and X. Wang, "A miniature low-loss slow-wave tunable ferroelectric bandpass filter from 11--14 GHz ," IEEE MTT-S International Microwave Symposium Digest, 556-559, 2006.

44. Delprat, S. L., C. Durand, J. Oh, M. Chaker, and K. Wu, "Correlation between the lattice parameter and the dielectric tunability in nonepitaxial Ba0:5Sr0:5TiO3 thin films ," Applied Physics Letters, Vol. 91, 063513-063513-3, 2007.
doi:10.1063/1.2768898

45. Wang, X., P. Bao, M. J. Lancaster, and T. J. Jackson, "Ferroelectric lumped element filter/switch for microwave applications," Proceedings of 38th European Microwave Conference, 43-46, 2008.

46. Wang, X., P. Bao, T. J. Jackson, and M. J. Lancaster, "Tunable microwave ¯lters based on discrete ferroelectric and semiconductor varactors ," IET Microwave, Antennas and Propagation, Vol. 5, No. 7, 776-782, 2011.
doi:10.1049/iet-map.2010.0417

47. Lourandakis, E., M. Schmidt, G. Fischer, and R. Weigel, "A ferroelectric tunable combline filter with improved stopband transitions," IEEE Radio and Wireless Symposium, 340-343, 2009.
doi:10.1109/RWS.2009.4957349

48. Courreges, S., Y. Li, Z. Zhao, K. Choi, A. T. Hunt, and J. Papapolymerou, "Two-pole X-band-tunable ferroelectric filters with tunable center frequency, fractional bandwidth and return loss ," IEEE Trans. on Microw. Theory and Techn., Vol. 57, No. 12, 2009.

49. Jiang, H., B. Lacroix, K. Choi, Y. Wang, A. T. Hunt, and J. Papapolymerou, "A compact ferroelectric tunable bandpass filter with flexible frequency responses," IEEE Intern. Conf. on Wireless Information Techn. and Systems, 2012.

50. Jones, G. R., "Magnetic tuning of resonant cavities and wideband frequency modulation of klystrons," Proceedings of the IRE, Vol. 44, 1431-1438, 1956.
doi:10.1109/JRPROC.1956.274987

51. Fay, C. E., "Ferrite-tuned resonant cavities," Proceedings of the IRE, Vol. 44, 1446-1449, 1956.
doi:10.1109/JRPROC.1956.274989

52. Carter, P. S., "Magnetically-tunable microwave filters using single-crystal Yttrium-Iron-Garnet resonators," IEEE Trans. on Microw. Theory and Techn., Vol. 9, 252-260, 1961.
doi:10.1109/TMTT.1961.1125316

53. Murakami, Y., T. Ohgihara, and T. Okamoto, "A 0.5--0.4- GHz tunable bandpass filter using YIG film grown by LPE," IEEE Trans. on Microw. Theory and Techn., Vol. 35, 1192-1198, 1987.
doi:10.1109/TMTT.1987.1133837

54. Tatarenko, A. S., V. Gheevarughese, and G. Srinivasan, "Magnetoelectric microwave bandpass filter," Electronics Letters, Vol. 42, 540-541, 2006.
doi:10.1049/el:20060167

55. Oates, D. E., G. F. Dionne, and R. L. Slattery, "Voltage tunable microwave filter resonator," IEEE MTT-S International Microwave Symposium Digest, 641-644, 2009.

56. Tai, C. S. and G. Qiu, "Wideband microwave filters using ferromagnetic resonance tuning in flip-chip YIG-GaAs layer structures," IEEE Transactions on Magnetics, Vol. 45, 656-660, 2009.

57. Adhikari, S., Y.-J. Ban, and K. Wu, "Magnetically tunable ferrite loaded substrate integrated waveguide cavity resonator," IEEE Microwave and Wireless Comp. Letters, Vol. 21, 139-141, 2011.
doi:10.1109/LMWC.2010.2102746

58. Popov, M. A., D. V. B. Murthy, I. V. Zavislyak, and G. Srinivasan, "Magnetic field tunable 18--36 GHz dielectric bandpass filter," Electronic Letters, Vol. 48, No. 2, 2012.
doi:10.1049/el.2011.3455

59. Yang, X., J. Wu, S. Beguhn, Z. Y. Zhou, J. Lou, and N. X. Sun, "Novel C-band tunable bandpass filter with low bias magnetic ¯elds using partially magnetized ferrites," IEEE MTT-S Microwave Symposium Digest, 2012.

60. Adhikari, S., A. Ghiotto, and K. Wu, "Simultaneous electric and magnetic two-dimensionally tuned parameter-agile SIW devices," IEEE Trans. on Microw. Theory and Techn., Vol. 61, No. 1, 423-435, 2013.
doi:10.1109/TMTT.2012.2226058