1. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 3-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 142, 159-188, 2013. Google Scholar
2. Smith, G. D., Numerical Solution of Partial Differential Equations, 2nd Ed., Oxford University Press, 1978.
3. Hall, C. A. and T. A. Porsching, "Numerical Analysis of Partial Differential Equations," Prentice-Hall, 1990. Google Scholar
4. Jo, C.-H., C. Shin, and J. H. Suh, "An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator," Geophysics, Vol. 61, No. 2, 529-537, 1996.
doi:10.1190/1.1443979 Google Scholar
5. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1194-1201, 1998.
doi:10.1109/8.718575 Google Scholar
6. Singer, I. and E. Turkel, "High-order finite difference method for the Helmholtz equation," Computer Methods in Applied Mechanics and Engineering, Vol. 163, 343-358, 1998.
doi:10.1016/S0045-7825(98)00023-1 Google Scholar
7. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050 Google Scholar
8. Sutmann, G., "Compact finite difference schemes of sixth order for the Helmholtz equation," Journal of Computational and Applied Mathematics, Vol. 203, 15-31, 2007.
doi:10.1016/j.cam.2006.03.008 Google Scholar
9. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces ," Journal of Lightwave Technology, Vol. 20, No. 7, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361 Google Scholar
10. Hadley, G. R., "High-accuracy finite-diffference equations for dielectric waveguide analysis II: Dielectric corners," Journal of Lightwave Technology, Vol. 20, No. 7, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371 Google Scholar
11. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 2-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807 Google Scholar
12. Mu, S.-Y. and H.-W. Chang, "Theoretical foundation for the method of connected local fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011. Google Scholar
13. Tsukerman, I. "Electromagnetic applications of a new finite-difference calculus," IEEE Transaction on Magnetics, Vol. 41, No. 7, 2206-2225, 2005.
doi:10.1109/TMAG.2005.847637 Google Scholar
14. Fernandes, D. T. and A. F. D. Loula, "Quasi optimal finite difference method for Helmholtz problem on unstructured grids," Int. J. Numer. Meth. Engng., Vol. 82, 1244-1281, 2010. Google Scholar
15. Chang, H.-W. and Y.-H. Wu, "Analysis of perpendicular crossing dielectric waveguides with various typical index contrasts and intersection profiles," Progress In Electromagnetics Research, Vol. 108, 323-341, 2010.
doi:10.2528/PIER10081008 Google Scholar
16. Engquist, B. and A. Majda, "Absorbing boundary conditions for numerical simulation of waves," Applied Mathematical Science, Vol. 74, 1765-1766, 1977. Google Scholar
17. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606 Google Scholar
18. Harari, I. and E. Turkel, "Accurate finite difference methods for time-harmonic wave propagation," Journal of Computational Physics, Vol. 119, No. 2, 252-270, 1995.
doi:10.1006/jcph.1995.1134 Google Scholar
19. Trefethen, L. N., "Group velocity in finite difference schemes," SIAM Rev., Vol. 24, No. 2, 113-136, 1982.
doi:10.1137/1024038 Google Scholar
20. Anne, L. and Q. H. Tran, "Dispersion and cost analysis of some ¯nite di®erence schemes in one-parameter acoustic wave modeling," Computational Geosciences, Vol. 1, 1-33, 1997.
doi:10.1023/A:1011576309523 Google Scholar
21. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Method for Electromagnetics, IEEE Press, 1998.
22. Rao, K. R., J. Nehrbass, and R. Lee, "Discretization errors in finite methods: Issues and possible solutions," Comput. Methods Appl. Mech. Engrg., Vol. 169, 219-236, 1999.
doi:10.1016/S0045-7825(98)00155-8 Google Scholar
23. Taflove, , A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2005. Google Scholar
24. Spotz, W. F. and G. F. Carey, "A high-order compact formulation for the 3D Poisson equation," Numerical Methods for Partial Differential Equations, Vol. 12, No. 2, 235-243, 1996.
doi:10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R Google Scholar
25. Chang, H.-W. and S.-Y. Mu, "3-D LFE-27 formulae for the method of connected local fields," Optics & Photonics Taiwan, International Conference, Dec. 2012. Google Scholar
26. Ishimaru, A., Electromagnetic Propagation, Radiation and Scattering, Prentice Hall, 1991.