1. Krumpholz, M. and L. P. B. Katehi, "New prospects for time domain analysis," IEEE Microwave Guid Wave Lett., Vol. 5, No. 11, 382-384, Dec. 1995.
doi:10.1109/75.473535 Google Scholar
2. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 4, 555-561, Apr. 1996.
doi:10.1109/22.491023 Google Scholar
3. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Ba·gi, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707 Google Scholar
4. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011. Google Scholar
5. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011. Google Scholar
6. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011. Google Scholar
7. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512 Google Scholar
8. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702 Google Scholar
9. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012. Google Scholar
10. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012. Google Scholar
11. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012. Google Scholar
12. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 132. Google Scholar
13. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013. Google Scholar
14. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step adi-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013. Google Scholar
15. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013. Google Scholar
16. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013. Google Scholar
17. Wang, W., P.-G. Liu, and Y.-J. Qin, "An unconditional stable 1D-FDTD method for modeling transmission lines based on precise split-step scheme," Progress In Electromagnetics Research, Vol. 135, 245-260, 2013. Google Scholar
18. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetic Research M, Vol. 18, 179-195, 2011. Google Scholar
19. Johnson, J., T. Takenaka, K. A. Hong Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. on Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/TBME.2009.2022635 Google Scholar
20. Moriyama, T., T. Takenaka, and Z. Meng, "Forward-backward time stepping method combined with genetic algorithm applied to breast cancer detection," Microwave and Optical Technology Letters, Vol. 53, No. 2, 438-442, 2009.
doi:10.1002/mop.25699 Google Scholar
21. Cheong, Y. W., Y. M. Lee, K. H. Ra, J. G. Kang, and C. C. Shin, "Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems," IEEE Microwave Guid Wave Lett., Vol. 9, No. 8, 297-299, Aug. 1999.
doi:10.1109/75.779907 Google Scholar
22. Fujii, M. and W. J. R. Hoefer, "Dispersion of time domain wavelet Galerkin method based on Daubechies' compactly supported scaling functions with three and four vanishing Moments," IEEE Microwave Guid Wave Lett., Vol. 10, No. 4, 125-127, Apr. 2000.
doi:10.1109/75.846920 Google Scholar
23. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, Apr. 2001.
doi:10.1109/74.924608 Google Scholar
24. Wang, L. and C. Liang, "A new implementation of CFS-PML for ADI-FDTD method," Microwave and Optical Technology Letters, Vol. 48, No. 10, 1924-1928, Oct. 2006.
doi:10.1002/mop.21816 Google Scholar
25. Cao, Q. and Y. Chen, "Application of an anisotropic perfectly matched layer absorber for open boundary truncation in the multiresolution time domain scheme," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 2, 350-357, Feb. 2003.
doi:10.1109/TAP.2003.809068 Google Scholar
26. Daubechies, I., Ten Lectures on Wavelets, SIAM, 1992.
doi:10.1137/1.9781611970104
27. Sweldens, R. Piessens and R. Piessens, "Wavelet sampling techniques," Proc. Statistical Computing Section, 20-29, 1993. Google Scholar
28. Liu, Y., Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and application of the spherical MRTD algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013. Google Scholar
29. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 7, 599-604, Sep. 1994.
doi:10.1002/mop.4650071304 Google Scholar
30. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microwave Guid Wave Lett., Vol. 6, 447-449, Dec. 1996.
doi:10.1109/75.544545 Google Scholar
31. Gedney, S. D., G. Liu, J. A. Roden, and A. Zhu, "Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method," IEEE Trans. on Antennas and Propagat., Vol. 49, 1554-1559, Nov. 2001.
doi:10.1109/8.964091 Google Scholar
32. Yu, W. and M. Raj, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957 Google Scholar
33. Taflove, A., Computational Electrodynamics: the Finite-difference Time-domain Method, Artech House, 1995.