1. Krumpholz, M. and L. P. B. Katehi, "New prospects for time domain analysis," IEEE Microwave Guid Wave Lett., Vol. 5, No. 11, 382-384, Dec. 1995.
doi:10.1109/75.473535
2. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. on Microwave Theory and Tech., Vol. 44, No. 4, 555-561, Apr. 1996.
doi:10.1109/22.491023
3. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Ba·gi, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707
4. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
5. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.
6. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.
7. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512
8. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702
9. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
10. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.
11. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.
12. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 132.
13. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.
14. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step adi-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.
15. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.
16. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013.
17. Wang, W., P.-G. Liu, and Y.-J. Qin, "An unconditional stable 1D-FDTD method for modeling transmission lines based on precise split-step scheme," Progress In Electromagnetics Research, Vol. 135, 245-260, 2013.
18. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetic Research M, Vol. 18, 179-195, 2011.
19. Johnson, J., T. Takenaka, K. A. Hong Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. on Biomed. Eng., Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/TBME.2009.2022635
20. Moriyama, T., T. Takenaka, and Z. Meng, "Forward-backward time stepping method combined with genetic algorithm applied to breast cancer detection," Microwave and Optical Technology Letters, Vol. 53, No. 2, 438-442, 2009.
doi:10.1002/mop.25699
21. Cheong, Y. W., Y. M. Lee, K. H. Ra, J. G. Kang, and C. C. Shin, "Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems," IEEE Microwave Guid Wave Lett., Vol. 9, No. 8, 297-299, Aug. 1999.
doi:10.1109/75.779907
22. Fujii, M. and W. J. R. Hoefer, "Dispersion of time domain wavelet Galerkin method based on Daubechies' compactly supported scaling functions with three and four vanishing Moments," IEEE Microwave Guid Wave Lett., Vol. 10, No. 4, 125-127, Apr. 2000.
doi:10.1109/75.846920
23. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, Apr. 2001.
doi:10.1109/74.924608
24. Wang, L. and C. Liang, "A new implementation of CFS-PML for ADI-FDTD method," Microwave and Optical Technology Letters, Vol. 48, No. 10, 1924-1928, Oct. 2006.
doi:10.1002/mop.21816
25. Cao, Q. and Y. Chen, "Application of an anisotropic perfectly matched layer absorber for open boundary truncation in the multiresolution time domain scheme," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 2, 350-357, Feb. 2003.
doi:10.1109/TAP.2003.809068
26. Daubechies, I., Ten Lectures on Wavelets, SIAM, 1992.
doi:10.1137/1.9781611970104
27. Sweldens, R. Piessens and R. Piessens, "Wavelet sampling techniques," Proc. Statistical Computing Section, 20-29, 1993.
28. Liu, Y., Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and application of the spherical MRTD algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013.
29. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 7, 599-604, Sep. 1994.
doi:10.1002/mop.4650071304
30. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microwave Guid Wave Lett., Vol. 6, 447-449, Dec. 1996.
doi:10.1109/75.544545
31. Gedney, S. D., G. Liu, J. A. Roden, and A. Zhu, "Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method," IEEE Trans. on Antennas and Propagat., Vol. 49, 1554-1559, Nov. 2001.
doi:10.1109/8.964091
32. Yu, W. and M. Raj, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957
33. Taflove, A., Computational Electrodynamics: the Finite-difference Time-domain Method, Artech House, 1995.