1. Shacham, A, K. Bergman, and L. P. Carloni, "Photonic networks-on-chip for future generations of chip multiprocessors," IEEE Trans. on Computers, Vol. 57, No. 9, 1246-1260, 2008.
doi:10.1109/TC.2008.78 Google Scholar
2. Paniccia, M. J., "A perfect marriage: Optics and silicon," Optik & Photonik, Vol. 2, 34-38, 2011.
doi:10.1002/opph.201190327 Google Scholar
3. Ahn, J., M. Fiorentino, R. G. Beausoleil, et al. "Devices and architectures for photonic chip-scale integration," Appl. Phys. A, Vol. 95, 989-997, 2009.
doi:10.1007/s00339-009-5109-2 Google Scholar
4. Alduino, A., L. Liao, M. R. Jones, et al. "Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers," Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD) , 2010. Google Scholar
5. Dai, D., L. Liu, S. Gao, D. Xu, and S. He, "Polarization management for silicon photonic integrated circuits," Laser Photon. Rev., Vol. 7, No. 303, 303-328, 2013.
doi:10.1002/lpor.201200023 Google Scholar
6. Doerr, C. and T. Taunay, "Silicon photonics core-, wavelength-, and polarization-diversity receiver," IEEE Photon. Tech. Lett., Vol. 23, 597-599, 2011.
doi:10.1109/LPT.2011.2118748 Google Scholar
7. Berdague, S. and P. Facq, "Mode division multiplexing in optical fibers," Appl. Opt., Vol. 21, 1950-1955, 1982.
doi:10.1364/AO.21.001950 Google Scholar
8. Randel, S., R. Ryf, A. Sierra, et al. "6 times 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6£6 MIMO equalization," Opt. Express, Vol. 19, 16697-16707, 2011.
doi:10.1364/OE.19.016697 Google Scholar
9. Liang, D., M. Fiorentino, T. Okumura, et al. "Electrically-pumped compact hybrid silicon microring lasers for optical interconnects ," Opt. Express, Vol. 17, 20355-20364, 2009.
doi:10.1364/OE.17.020355 Google Scholar
10. Saffman, M. and D. Z. Anderson, "Mode multiplexing and holo-graphic demultiplexing communication channels on a multimode fiber," Opt. Lett., Vol. 16, 302-302, 1991. Google Scholar
11. Doerr, C., "Proposed architecture for MIMO optical demultiplex-ing using photonic integration," IEEE Photon. Tech. Lett., Vol. 23, 1573-1575, 2011.
doi:10.1109/LPT.2011.2164061 Google Scholar
12. Uematsu, T., Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, "Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission," J. Lightwave Technol., Vol. 30, No. 15, 2421-2426, 2012.
doi:10.1109/JLT.2012.2199961 Google Scholar
13. Kawaguchi, Y. and K. Tsutsumi, "Mode multiplexing and demultiplexing devices using multimode Interference couplers ," Electron. Lett., Vol. 38, No. 25, 1701-1702, 2002.
doi:10.1049/el:20021154 Google Scholar
13. Dai, D., "Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light," Asia Communications and Photonics Conference, OSA Technical Digest (Online), 2012. Google Scholar
15. Yadin, Y. and M. Orenstein, "Parallel optical interconnects over multimode waveguides," J. Lightwave Technol., Vol. 24, No. 1, 380-386, 2006.
doi:10.1109/JLT.2005.860151 Google Scholar
16. Ryf, R., M. Mestre, A. Gnauck, S. Randel, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, "Low-loss mode coupler for mode-multiplexed transmission in few-mode ¯ber," National Fiber Optic Engineers Conference, OSA Technical Digest," Optical Society of America, 2012. Google Scholar
17. Chen, H. S., V. Sleiffer, F. Huijskens, R. van Uden, H. S. Y. Sun, H. de Waardt, and T. Koonen , "Employing prism-based three-spot mode couplers for high capacity MDM/WDM transmission," IEEE Photon. Tech. Lett., Vol. 25, No. 24, 2474-2477, Dec. 2013.
doi:10.1109/LPT.2013.2286826 Google Scholar
18. Ryf, R., S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, "Space-division multiplexing over 10km of three-mode fiber using coherent 6 £ 6 MIMO processing," Optical Fiber Communication £ Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference , 1-3, Mar. 2011. Google Scholar
19. Salsi, M., C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, and L. Prov, "Transmission at 2 times 100 Gb/s, over two modes of 40 km-long prototype few-mode fiber using LCOS based mode multiplexer and demultiplexer," Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD), 2011. Google Scholar
20. Youngquist, R., J. Brooks, and H. Shaw, "Two-mode fiber modal coupler," Opt. Lett., Vol. 9, 177-179, 1984.
doi:10.1364/OL.9.000177 Google Scholar
21. Youngquist, R., J. Brooks, N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, Demonstration of mode-, "Demonstration of mode-division multiplexing transmission over 10km two-mode fiber with mode coupler," Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 1-3, Mar. 2011. Google Scholar
22. Li, A., A. Al Amin, X. Chen, and W. Shieh, "Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber," Opt. Express, Vol. 19, 8808-8814, 2011.
doi:10.1364/OE.19.008808 Google Scholar
23. Chen, H. S., V. Slei®er, B. Snyder, M. Kuschnerov, R. van Uden, Y. M. Jung, C. M. Okonkwo, O. Raz, P. O'Brien, H. de Waardt, and T. Koonen, "Demonstration of a photonic integrated mode coupler with MDM and WDM transmission ," IEEE Photon. Tech. Lett., Vol. 25, No. 21, 2039-2042, Nov. 2013.
doi:10.1109/LPT.2013.2280669 Google Scholar
24. Hanzawa, N., K. Saitoh, T. Sakamoto, T. Matsui, K. Tsu-jikawa, M. Koshiba, and F. Yamamoto, "Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division mul-tiplexed transmission," Opt. Express, Vol. 21, 25752-25760, 2013.
doi:10.1364/OE.21.025752 Google Scholar
25. Gabrielli, L. H., D. Liu, S. G. Johnson, and M. Lipson, "On-chip transformation optics for multimode waveguide bends," Nature Commun., Vol. 3, 1217, 2012.
doi:10.1038/ncomms2232 Google Scholar
26. Hanzawa, N., K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, "Demonstration of mode-division multiplexing transmission over 10km two-mode fiber with mode coupler," Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) , 2011. Google Scholar
27. Dai, D., J. Wang, and Y. Shi, "Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light," Opt. Lett., Vol. 38, 1422-1424, 2013.
doi:10.1364/OL.38.001422 Google Scholar
28. Qiu, H. Y., H. Yu, T. Hu, G. M. Jiang, H. F. Shao, P. Yu, J. Y. Yang, and X. Q. Jiang, "Silicon mode multi/demultiplexer based on multimode grating-assisted couplers," Opt. Express, Vol. 21, 17904-17911, 2013.
doi:10.1364/OE.21.017904 Google Scholar
29. Luo, L., N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, "Simultaneous mode and wavelength division multiplexing on-chip,", 2013.
doi: arXiv: 1306.2378 Google Scholar
30. Dai, D., Y. Shi, and S. He, "Comparative study of the integration density for passive linear planar lightwave circuits based on three di®erent kinds of nanophotonic waveguides," Appl. Opt., Vol. 46, No. 7, 1126-1131, 7, 1126{.
doi:10.1364/AO.46.001126 Google Scholar
31. Bogaerts, W. and S. K. Selvaraja, "Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends," IEEE Photon. J., Vol. 3, 422-432, 2011.
doi:10.1109/JPHOT.2011.2142931 Google Scholar
32. Shani, Y., C. Henry, R. Kistler, K. Orlowsky, and D. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. , Vol. 55, 2389-2391, 1989.
doi:10.1063/1.102290 Google Scholar
33. Smith, R., C. Sullivan, G. Vawter, G. Hadley, J. Wendt, M. Snipes, and J. Klem, "Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler," IEEE Photon. Technol. Lett., Vol. 5, 1053-1056, 1993. Google Scholar
34. Zengerle, R., H. Bruckner, H. Olzhausen, and A. Kohl, "Low-loss fiber-chip coupling by buried laterally tapered InP/InGaAsP waveguide structure," Electron. Lett., Vol. 28, 631-632, 1992.
doi:10.1049/el:19920398 Google Scholar
35. Kasaya, K., O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, "A simple laterally tapered waveguide for low-loss coupling to single-mode fibers," IEEE Photon. Technol. Lett., Vol. 5, 345-347, 1993.
doi:10.1109/68.205633 Google Scholar
36. Schwander, T., S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, "Simple and low-loss fiber-to-chip coupling by integrated field-matching waveguide in InP," Electron. Lett., Vol. 29, 326-328, 1993.
doi:10.1049/el:19930221 Google Scholar
37. Yang, L., D. Dai, B. Yang, Z. Sheng, and S. He, "Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a Si rib waveguide," Appl. Opt., Vol. 48, 672-678, 2009.
doi:10.1364/AO.48.000672 Google Scholar
38. Dai, D., S. He, and H. K. Tsang, "Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide," J. Lightwave Technol., Vol. 24, 2428-2433, 2006. Google Scholar
39. Barkai, A., A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, "Double-stage taper for coupling between SOI waveguides and single-mode fiber," J. Lightwave Technol., Vol. 26, 3860-3865, 2008.
doi:10.1109/JLT.2008.928199 Google Scholar
40. Shani, Y., C. H. Henry, R. C. Kistler, R. F. Kazarinov, and K. J. Orlowsky, "Integrated optic adiabatic devices on silicon," IEEE J. Quant. Electron., Vol. 27, 556-566, 1991.
doi:10.1109/3.81363 Google Scholar
41. Fan, R. S. and R. B. Hooker, "Tapered polymer single-mode waveguides for mode transformation," J. Lightwave Technol., Vol. 17, 466-474, 1999.
doi:10.1109/50.749387 Google Scholar
42. WÄorhoff, K., P. V. Lambeck, and A. Driessen, "Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices ," J. Lightwave Technol., Vol. 17, 1401-1407, 1999.
doi:10.1109/50.779161 Google Scholar
43. Sewell, P., T. M. Benson, and P. C. Kendall, "Rib waveguide spot-size transformers: Modal properties," J. Lightwave Technol., Vol. 17, 848-856, 1999.
doi:10.1109/50.762903 Google Scholar
44. Sasaki, K., F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70times 60 mu m2 size based on Si photonic wire waveguides," Electron. Lett., Vol. 41, 801-802, 2005.
doi:10.1049/el:20051541 Google Scholar
45. Dai, D., L. Liu, L. Wosinski, and S. He, "Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides," Electron. Lett., Vol. 42, 400-402, 2006.
doi:10.1049/el:20060157 Google Scholar
46. Bogaerts, W., S. K. Selvaraja, P. Dumon, J. Brouckaert, K. de Vos, D. van Thourhout, and R. Baets, "Silicon-on-insulator spectral filters fabricated with CMOS technology," IEEE J. Sel. Top. Quant. Electron., Vol. 16, 33-44, 2010.
doi:10.1109/JSTQE.2009.2039680 Google Scholar
47. Fukuda, H., K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, "Silicon photonic circuit with polarization diversity," Opt. Express, Vol. 16, 4872-4880, 2008.
doi:10.1364/OE.16.004872 Google Scholar
48. Bogaerts, W., P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, "Compact wavelength-selective functions in silicon-on-insulator photonic wires ," IEEE J. Sel. Top. Quant. Electron., Vol. 12, 1394-1401, 2006.
doi:10.1109/JSTQE.2006.884088 Google Scholar
49. Soltani, M., S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics ," Opt. Express, Vol. 15, 4694-4704, 2007.
doi:10.1364/OE.15.004694 Google Scholar
50. Boyraz, O. and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express, Vol. 12, 5269-5273, 2004.
doi:10.1364/OPEX.12.005269 Google Scholar
51. Li, C., L. Zhou, and A. W. Poon, "Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling ," Opt. Express, Vol. 15, 5069-5076, 2007.
doi:10.1364/OE.15.005069 Google Scholar