1. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.
2. Chew, W. C., "Analysis of optical and millimeter wave dielectric waveguide," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 4, 359-377, 1989.
doi:10.1163/156939389X00106 Google Scholar
3. Eyges, L., P. Gianino, and P. Wintersteiner, "Modes of dielectric waveguides of arbitrary cross-sectional shape," J. Opt. Soc. Am., Vol. 698, 1226-1235, 1979.
doi:10.1364/JOSA.69.001226 Google Scholar
4. Bagby, J. S., D. P. Nyquist, and B. C. Drachman, "Integral formulation for analysis of integrated dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 33, 906-915, 1985.
doi:10.1109/TMTT.1985.1133149 Google Scholar
5. Galick, A. T., T. Kerkhoven, and U. Ravaioli, "Iterative solution of the eigenvalue problem for a dielectric waveguide," IEEE Trans. Microw. Theory Tech., Vol. 40, 699-705, 1992.
doi:10.1109/22.127519 Google Scholar
6. Schulz, N., K. Bierwirth, F. Arndt, and U. Koster, "Finite-difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguides," IEEE Trans. Mi- crow. Theory Tech., Vol. 38, 722-729, 1990.
doi:10.1109/22.130966 Google Scholar
7. Bierwirth, K., N. Schulz, and F. Arndt, "Finite-difference analysis of rectangular dielectric waveguide structures," IEEE Trans. Microw. Theory Tech., Vol. 34, 1104-1114, 1986.
doi:10.1109/TMTT.1986.1133506 Google Scholar
8. Schweig, E. and W. B. Bridges, "Computer analysis of dielectric waveguides: A finite-difference method," IEEE Trans. Microw. Theory Tech., Vol. 32, 531-541, 1984.
doi:10.1109/TMTT.1984.1132717 Google Scholar
9. Radhakrishnan, K., "Analysis of dielectric waveguides and microstrip lines using Krylov subspace based techniques,", Ph.D. Thesis, U. Illinois, Urbana-Champaign, USA, 1999. Google Scholar
10. Radhakrishnan, K. and W. C. Chew, "Efficient analysis of waveguiding structures," Fast Efficient Algorithms in Comp. Electrom., 461-485, Chapter 10, Artech House, Inc., Boston, 2001. Reprinted by EML, Univ. Illinois, 2006. Google Scholar
11. Cendes, Z. J. and P. Silvester, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microw. Theory Tech., Vol. 18, 1124-1131, 1970.
doi:10.1109/TMTT.1970.1127422 Google Scholar
12. Ahmed, S. and P. Daly, "Finite element method for inhomogeneous waveguides," IEE Proc., Vol. 116, 1661-1664, 1969. Google Scholar
13. Chew, W. C. and M. A. Nasir, "A variational analysis of anisotropic, inhomogeneous dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 37, 661-668, 1989.
doi:10.1109/22.18837 Google Scholar
14. Ikeuchi, M., H. Swami, and H. Niki, "Analysis of open type dielectric waveguide by the finite element iterative method," IEEE Trans. Microw. Theory Tech., Vol. 29, 234-239, 1981.
doi:10.1109/TMTT.1981.1130333 Google Scholar
15. Rahman, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Trans. Microw. Theory Tech., Vol. 32, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606 Google Scholar
16. Koshiba, M., K. Hayata, and M. Suzuki, "Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor," IEEE Trans. Microw. Theory Tech., Vol. 32, 587-593, 1984.
doi:10.1109/TMTT.1984.1132733 Google Scholar
17. Lee, J. F., D. K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microw. Theory Tech., Vol. 39, 1262-1271, 1991.
doi:10.1109/22.85399 Google Scholar
18. Lee, J. F., "Finite element analysis of lossy dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 42, 1025-1031, 1994.
doi:10.1109/22.293572 Google Scholar
19. Feynman, R., R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Vol. I, Chapter 52, Addison-Wesley Publishing Co., 1965.
20. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
21. Chew, W. C., "Inhomogeneously filled waveguides," Theory of Guided Waves, Note of Course at U. Illinois, Urbana-Champaign, 2012. Google Scholar
22. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching electromagnetic field theory using differential forms," IEEE Trans. Educ., Vol. 40, 53-68, Feb. 1997.
doi:10.1109/13.554670 Google Scholar
23. Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover Publications, Mineola, NY, 1963.
24. Tarhasaari, T. and L. Kettunen, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, 1494-1497, 1999.
doi:10.1109/20.767250 Google Scholar
25. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
26. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proc., Vol. 135, 493-500, 1998. Google Scholar
27. Bossavit, A., "Generating Whitney forms of polynomial degree one and higher," IEEE Trans. Magn., Vol. 38, 314-344, 2000. Google Scholar
28. He, B. and F. L. Teixeira, "On the degree of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001 Google Scholar
29. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002 Google Scholar
30. He, B., "Compatible discretizations for Maxwell equations,", Ph.D. Thesis, Ohio State U., USA, 2006. Google Scholar
31. Kim, J. and F. L. Teixeira, "Parallel and explicit finite-element time-domain method for Maxwell's equations," IEEE Trans. Antennas Propag, Vol. 59, 2350-2356, 2011.
doi:10.1109/TAP.2011.2143682 Google Scholar
32. Rao, S. M., D. R. Wilton, and W. A. Glisson, "Electromagnetic scattering by arbitrarily shaped three dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
33. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 40, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5 Google Scholar
34. Chen, Q. and D. R. Wilton, "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies," Antennas Propag. Soc. Int. Symp., 1990. Google Scholar
35. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, 2008.
doi:10.1109/TAP.2008.926788 Google Scholar
36. Grote, M. J. and T. Huckle, "Parallel preconditioning with sparse approximate inverses," SIAM J. Sci. Comp., Vol. 18, 838-853, 1997.
doi:10.1137/S1064827594276552 Google Scholar
37. Goell, J. E., "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.
doi:10.1002/j.1538-7305.1969.tb01168.x Google Scholar
38. Yang, J. J., G. E. Howard, and Y. L. Chow, "A simple tech-nique for calculating the propagation dispersion of multiconductor transmission lines in multilayer eielectric media," IEEE Trans. Mi- crow. Theory Tech., Vol. 40, 622-627, 1992.
doi:10.1109/22.127508 Google Scholar