1. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP Press, 1998.
doi:10.1887/0750304359
2. Massa, A. and S. Caorsi, Special Issue on `Microwave Imaging and Inverse Scattering Techniques', Vol. 16, No. 2, 2003.
doi:ISSN 0920-5071
3. Lesselier, D., T. Habashy, and , "Special issue on `Electromagnetic imaging and inversion on the Earth's subsurface'," Inverse Probl., Vol. 16, No. 5, 2000. Google Scholar
4. Chew, W. C. and D. Lesseliser, "Special issue on `Electromagnetic characterization of buried obstacles'," Inverse Probl., Vol. 20, No. 6, 2004. Google Scholar
5. Zhang, X., H. Tortel, S. Ruy, and A. Litman, "Microwave imaging of soil water diffusion using the linear sampling method," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 3, 421-425, 2011.
doi:10.1109/LGRS.2010.2082490 Google Scholar
6. Caorsi, S., A. Massa, and M. Pastorino, "A crack identification microwave procedure based on a genetic algorithm for nondestructive testing ," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1812-1820, 2001.
doi:10.1109/8.982464 Google Scholar
7. Benedetti, M., Benedetti, M., M. Donelli, and A. Massa, "Multicrack detection in two-dimensional structures by means of GA-based strategies," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 205-215, 2007.
doi:10.1109/TAP.2006.888399 Google Scholar
8. Mudanyal, O., S. Yldz, O. Semerci, A. Yapar, and I. Akduman, "A microwave tomographic approach for nondestructive testing of dielectric coated metallic surfaces," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 2, 180-184, 2008.
doi:10.1109/LGRS.2008.915602 Google Scholar
9. Ma, Y.-K., P.-S. Kin, and W.-K. Park, "Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducing cracks," Progress In Electromagnetics Research, Vol. 122, 311-325, 2012.
doi:10.2528/PIER11092901 Google Scholar
10. Joh, Y.-D. and W.-K. Park, "Structural behavior of the Music-type algorithm for imaging perfectly conducting cracks," Progress In Electromagnetics Research, Vol. 138, 211-226, 2013. Google Scholar
11. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
12. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701 Google Scholar
13. Zhou, H., Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "Breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
14. Henriksson, T., N. Joachimowicz, C. Conessa, and J.-C. Bolomey, "Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system ," IEEE Trans. Instrum. Meas., Vol. 59, No. 10, 2691-2699, 2010.
doi:10.1109/TIM.2010.2045540 Google Scholar
15. Ashtari, A., S. Noghanian, A. Sabouni, J. Aronsson, G. Thomas, and S. Pistorius, "Using a priori information for regularization in breast microwave image reconstruction," IEEE Trans. Biomed. Eng., Vol. 57, No. 9, 2197-2208, 2010.
doi:10.1109/TBME.2010.2051439 Google Scholar
16. Bozza, G., M. Brignone, and M. Pastorino, "Application of the no-sampling linear sampling method to breast cancer detection ," IEEE Trans. Biomed. Eng., Vol. 57, No. 10, 2525-2534, 2010.
doi:10.1109/TBME.2010.2055059 Google Scholar
17. Flores-Tapia, D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
doi:10.2528/PIER11050408 Google Scholar
18. Hagness, S., E. Fear, and A. Massa, "Special cluster on Microwave medical imaging," IEEE Antennas Wireless Propagat. Lett., Vol. 11, 1592-1597, 2012.
doi:10.1109/LAWP.2013.2240569 Google Scholar
20. Davy, M., T. Lepetit, J. de Rosny, C. Prada, and M. Fink, "Detection and imaging of human beings behind a wall using the Dort method," Progress In Electromagnetics Research, Vol. 110, 353-369, 2010.
doi:10.2528/PIER10091703 Google Scholar
20. Zhang, W., "Through-the-wall target localization with time reversal Music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408 Google Scholar
21. Lu, T., K. Agarwal, Y. Zhong, and X. Chen, "Through-wall imaging: Application of subspace-based optimization method," Progress In Electromagnetics Research, Vol. 102, 351-366, 2010.
doi:10.2528/PIER10020903 Google Scholar
22. Catapano, I. and L. Crocco, "A qualitative inverse scattering method for through-the-wall imaging," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 4, 685-689, 2010.
doi:10.1109/LGRS.2010.2045473 Google Scholar
23. Burkholder, R. J. and K. E. Browne, "Coherence factor enhancement of through-wall radar images," IEEE Antennas Wireless Propag. Lett., Vol. 9, 842-845, 2010.
doi:10.1109/LAWP.2010.2069078 Google Scholar
24. Soldovieri, F., F. Ahmad, and R. Solimene, "Validation of microwave tomographic inverse scattering approach via through-the-wall experiments in semicontrolled conditions," IEEE Geosci. IEEE Geosci., Vol. 8, No. 1, 123-127, 2011. Google Scholar
25. Dorn, O. and D. Lesselier, "Special issue on `Electromagnetic inverse problems: Emerging methods and novel applications'," Inverse Probl., Vol. 26, No. 7, 2010. Google Scholar
26. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag., Vol. 37, No. 7, 918-926, 1989.
doi:10.1109/8.29386 Google Scholar
27. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, No. 6, 2123-2137, 1997.
doi:10.1029/97RS01826 Google Scholar
28. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 7, 1596-1607, 2001.
doi:10.1109/36.934091 Google Scholar
29. D'Urso, M., M., T. Isernia, and A. F. Morabito, "On the solution of 2-D inverse scattering problems via source-type integral equations," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1186-1198, 2010.
doi:10.1109/TGRS.2009.2032175 Google Scholar
30. Agarwal, K., L. Pan, and X. Chen, "Subspace-based optimization method for reconstruction of 2-D complex anisotropic dielectric objects ," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 1065-1074, 2010.
doi:10.1109/TMTT.2010.2042523 Google Scholar
31. Estatico, C., G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, "A two steps inexact-Newton method for electromagnetic imaging of dielectric structures from real data," Inverse Probl., Vol. 21, No. 6, 81-94, 2005.
doi:10.1088/0266-5611/21/6/S07 Google Scholar
32. Barriere, P., J. Idier, Y. Goussard, and J. Laurin, "Fast solutions of the 2D inverse scattering problem based on a TSVD approximation of the internal field for the forward model," IEEE Trans. Antennas Propag., Vol. 58, 4015-4024, 2010.
doi:10.1109/TAP.2010.2078440 Google Scholar
33. Li, J., X. Wang, and T. Wang, "On the validity of Born approximation," Progress In Electromagnetics Research, Vol. 107, 219-237, 2010.
doi:10.2528/PIER10070504 Google Scholar
34. Poli, L., G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing," IEEE Trans. Antennas Propagat., Vol. 60, 2865-2879, 2012.
doi:10.1109/TAP.2012.2194676 Google Scholar
35. Oliveri, G., L. Poli, P. Rocca, and A. Massa, "Bayesian compressive optical imaging within the Rytov approximation," Opt. Lett., Vol. 37, 1760-1762, 2012.
doi:10.1364/OL.37.001760 Google Scholar
36. Winters, D. W., B. D. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem ," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 145-154, 2010.
doi:10.1109/TAP.2009.2035997 Google Scholar
37. Oliveri, G. and A Bayesian-compressive-, "A Bayesian-compressive-sampling-based inversion for imaging sparse scatterers ," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 3993-4006, 2011.
doi:10.1109/TGRS.2011.2128329 Google Scholar
38. Poli, L., G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations ," IEEE Trans. Geosci. Remote Sens., Vol. 51, 2920-2936, 2013. Google Scholar
39. Viani, F., L. Poli, G. Oliveri, F. Robol, and A. Massa, "Spars scatterers imaging through approximated multi-task compressive sensing strategies ," Microwave Opt. Technol. Lett., Vol. 55, 1553-1557, 2013.
doi:10.1002/mop.27612 Google Scholar
40. Rekanos, I. T., "Neural-network-based inverse-scattering technique for online microwave medical imaging," IEEE Trans. Mag., Vol. 38, No. 2, 1061-1064, 2002.
doi:10.1109/20.996272 Google Scholar
41. Massa, A., A. Boni, and M. Donelli, "A classification approach based on SVM for electromagnetic subsurface sensing," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 9, 2084-2093, 2005.
doi:10.1109/TGRS.2005.853186 Google Scholar
42. Bermani, E., Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems ," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801 Google Scholar
43. Miller, E. L. and A. S. Willsky, "A multiscale, statistically based inversion scheme for linearized inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 346-357, 1996.
doi:10.1109/36.485112 Google Scholar
44. Caorsi, S., M. Donelli, and A. Massa, "Detection, location and imaging of multiple scatterers by means of the iterative multiscaling method ," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1217-1228, 2004.
doi:10.1109/TMTT.2004.825699 Google Scholar
45. Poli, L. and P. Rocca, "Exploitation of TE-TM scattering data for microwave imaging through the multi-scaling reconstruction strategy ," Progress In Electromagnetics Research, Vol. 99, 245-260, 2009.
doi:10.2528/PIER09101105 Google Scholar
46. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi- resolution retrieval of non-measurable equivalent currents for imaging purposes ," Inverse Probl., Vol. 25, No. 5, 1-25, 2009. Google Scholar
47. Rocca, P., "Multi-resolution retrieval of non-measurable equivalent currents in microwave imaging problems --- Experimental assessment," Progress In Electromagnetics Research, Vol. 96, 267-285, 2009.
doi:10.2528/PIER09072004 Google Scholar
48. Lee, Y.-S., C.-C. Chiu, and Y.-S. Lin, "Electromagnetic imaging for an imperfectly conducting cylinder buried in a three-layer structure by the genetic algorithm," Progress In Electromagnetics Research, Vol. 48, 27-44, 2004.
doi:10.2528/PIER03120304 Google Scholar
49. Chen, X., K.-M. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method ," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902 Google Scholar
50. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using Fourier series expansion in conjunction with FDTD and PSO ," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204 Google Scholar
51. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization ," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904 Google Scholar
52. Semnani, A. and M. Kamyab, "Truncated cosine Fourier series expansion method for solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404 Google Scholar
53. Brignone, M., G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, "A hybrid approach to 3D microwave imaging by using linear sampling and ACO," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3224-3224, 2008.
doi:10.1109/TAP.2008.929504 Google Scholar
54. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems ," Inverse Probl., Vol. 25, 1-41, 2009. Google Scholar
55. Semnani, A., I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, "Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution ," IEEE Trans. Antennas Propag., Vol. 58, No. 10, 3289-3298, 2010.
doi:10.1109/TAP.2010.2055793 Google Scholar
56. Moore, R., "Interval Analysis," Prentice-Hall, 1966. Google Scholar
57. Hansen, E., "On solving systems of equations using interval arithmetic," Mathematics of Computation, Vol. 22, No. 102, 374-384, 1968.
doi:10.1090/S0025-5718-1968-0229411-4 Google Scholar
58. Neumaier, A., "Interval iteration for zeros of systems of equations," BIT, Vol. 25, No. 1, 256-273, 1985.
doi:10.1007/BF01935003 Google Scholar
59. Saxena, G. and D. A. Lowther, "The use of interval mathematics in electromagnetic design," IEEE Trans. Mag., Vol. 37, No. 5, 3588-3591, 2001.
doi:10.1109/20.952668 Google Scholar
60. Egiziano, L., P. Lamberti, G. Spagnuolo, and V. Tucci, "Robust design of electromagnetic systems based on interval Taylor extension applied to a multiquadric performance function," IEEE Trans. Mag., Vol. 44, No. 6, 1134-1137, 2008.
doi:10.1109/TMAG.2007.916163 Google Scholar
61. Soares, G. L., A. Arnold-Bos, L. Jaulin, C. A. Maia, and J. A. Vasconcelos, "An interval-based target tracking approach for range-only multistatic radar," IEEE Trans. Mag., Vol. 44, No. 6, 1350-1353, 2008.
doi:10.1109/TMAG.2007.916286 Google Scholar
62. Chew, W. C., Waves and Fields in Inhomogeneous Media,, IEEE Press, 1995.
63. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 8, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783 Google Scholar
64. Caorsi, S. and M. Pastorino, "Two-dimensional microwave imaging approach based on a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 48, No. 3, 370-373, 2000.
doi:10.1109/8.841897 Google Scholar
65. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427 Google Scholar
66. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.
doi:10.1007/978-3-662-02835-3
67. Hansen, E., "Global optimization using interval analysis --- The multi-dimensional case," Numer. Math., Vol. 34, 247-270, 1980.
doi:10.1007/BF01396702 Google Scholar
68. Rall, L. B., Computational Solution of Nonlinear Operator Equations, Wiley, 1969.
69. Caorsi, S., M. Donelli, and A. Massa, "Analysis of the stability and robustness of the iterative multi-scaling approach for microwave imaging applications ," Radio Sci., Vol. 39, 1-17, 2004. Google Scholar