1. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics, Vol. 2, No. 4, 226, 2008.
doi:10.1038/nphoton.2008.30 Google Scholar
2. Yuan, Z., B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science, Vol. 295, 102, 2002.
doi:10.1126/science.1066790 Google Scholar
3. Akimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, Vol. 450, 402, 2007.
doi:10.1038/nature06230 Google Scholar
4. Park, I. Y., S. Kim, J. Choi, D. H. Lee, Y. J. Kim, M. F. Kling, M. I. Stockman, and S. W. Kim, "Plasmonic generation of ultrashort extreme-ultraviolet light pulses," Nat. Photonics, Vol. 5, 677, 2011.
doi:10.1038/nphoton.2011.258 Google Scholar
5. Sederber, S. and A. Y. Elezzabi, "Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide," Phys. Rev. Lett., Vol. 113, 167401, 2014.
doi:10.1103/PhysRevLett.113.167401 Google Scholar
6. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
doi:10.2528/PIER20072201 Google Scholar
7. Aouani, H., M. Rahmani, M. Navarro-Cía, and S. A. Maier, "Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna," Nat. Nanotechnol., Vol. 9, 290, 2014.
doi:10.1038/nnano.2014.27 Google Scholar
8. Kim, S., J. Jin, Y. J. Kin, I. Y. Park, Y. Kim, and S. W. Kim, "High-harmonic generation by resonant plasmon eld enhancement," Nature, Vol. 453, 757, 2008.
doi:10.1038/nature07012 Google Scholar
9. Beneck, R. J., A. Das, G. Mackertich-Sengerdy, R. J. Chaky, Y. Wu, S. Soltani, and D. Werner, "Reconfigurable antennas: A review of recent progress and future prospects for next generation," Progress In Electromagnetics Research, Vol. 171, 89-121, 2021. Google Scholar
10. Choo, H., M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, "Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, Vol. 6, 838-844, 2012.
doi:10.1038/nphoton.2012.277 Google Scholar
11. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 93, 137404, 2004.
doi:10.1103/PhysRevLett.93.137404 Google Scholar
12. Srituravanich, W., L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol., Vol. 3, 733, 2008.
doi:10.1038/nnano.2008.303 Google Scholar
13. Wagner, C. and N. Harned, "Lithography gets extreme," Nat. Photonics, Vol. 4, 24, 2010.
doi:10.1038/nphoton.2009.251 Google Scholar
14. Sternbach, A. J., S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X. Y. Zhu, R. D. Averitt, H. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, "Programmable hyperbolic polaritons in van der Waals semiconductors," Science, Vol. 371, 5529, 2021. Google Scholar
15. Chen, M., X. Lin, T. H. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, and S. Dai, "Configurable phonon polaritons in twisted α-MoO3," Nat. Mater., Vol. 19, 1307, 2020.
doi:10.1038/s41563-020-0732-6 Google Scholar
16. Sedov, E. S., I. V. Iorsh, S. M. Arakelian, A. P. Alodjants, and A. Kavokin, "Hyperbolic metamaterials with Bragg polaritons," Phys. Rev. Lett., Vol. 114, 237402, 2015.
doi:10.1103/PhysRevLett.114.237402 Google Scholar
17. Yoxall, E., M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. Koppens, and R. Hillenbrand, "Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity," Nat. Photonics, Vol. 9, 674, 2015.
doi:10.1038/nphoton.2015.166 Google Scholar
18. Caldwell, J. D., A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nat. Commun., Vol. 5, 5221, 2014.
doi:10.1038/ncomms6221 Google Scholar
19. Li, P., M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, "Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing," Nat. Commun., Vol. 6, 7507, 2015.
doi:10.1038/ncomms8507 Google Scholar
20. Dai, S., Q. Ma, T. Andersen, A. Mcleod, Z. Fei, M. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, "Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material," Nat. Commun., Vol. 6, 6963, 2015.
doi:10.1038/ncomms7963 Google Scholar
21. Alfaro-Mozaz, F. J., P. Alonso-González, S. Vélez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L. E. Hueso, P. Li, A. Y. Nikitin, and R. Hillenbrand, "Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas," Nat. Commun., Vol. 8, 15624, 2017.
doi:10.1038/ncomms15624 Google Scholar
22. Shen, L., X. Lin, M. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Appl. Phys. Rev., Vol. 7, 021403, 2020.
doi:10.1063/1.5141275 Google Scholar
23. Ishii, S., A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, "Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium," Laser & Photon. Rev., Vol. 7, 265, 2013.
doi:10.1002/lpor.201200095 Google Scholar
24. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 5819, 1686, 2007. Google Scholar
25. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148 Google Scholar
26. Sun, J., M. I. Shalaev, and N. M. Litchinitser, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nat. Commun., Vol. 6, 7201, 2015.
doi:10.1038/ncomms8201 Google Scholar
27. Xiong, Y., Z. Liu, and X. Zhang, "Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers," Appl. Phys. Lett., Vol. 93, 111116, 2008.
doi:10.1063/1.2985898 Google Scholar
28. Shen, L., A. V. Kildishev, and H. Chen, "Designing optimal nanofocusing with a gradient hyperlens," Nanophotonics, Vol. 7, 479, 2018. Google Scholar
29. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
doi:10.1364/OE.14.008247 Google Scholar
30. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907 Google Scholar
31. Leonhardt, U., "Optical conformal mapping," Science, Vol. 23, 1777, 2006.
doi:10.1126/science.1126493 Google Scholar
32. Shen, L., B. Zheng, Z. Liu, Z. Wang, S. Lin, S. Dehdashti, E. Li, and H. Chen, "Large-scale far-infrared invisibility cloak hiding object from thermal detection," Adv. Opt. Mater., Vol. 112, 7635, 2015. Google Scholar
33. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, 2652, 2013.
doi:10.1038/ncomms3652 Google Scholar
34. Chen, H., B. Wu, B. Zhang, and J. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903 Google Scholar
35. Xi, S., H. Chen, B. Wu, and J. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 3, 131, 2009.
doi:10.1109/LMWC.2009.2013677 Google Scholar
36. Zhang, B., H. Chen, B. Wu, and J. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.
doi:10.1103/PhysRevLett.100.063904 Google Scholar
37. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, 383, 2020.
doi:10.1038/s41566-020-0604-2 Google Scholar
38. Xu, S., X. Cheng, S. Xi, R. Zhang, H. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, "Experimental demonstration of a free space cylindrical cloak without superluminal propagation," Phys. Rev. Lett., Vol. 109, 223903, 2012.
doi:10.1103/PhysRevLett.109.223903 Google Scholar
39. Aubry, A., D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, "Plasmonic light-harvesting devices over the whole visible spectrum," Nano Lett., Vol. 10, 2574, 2010.
doi:10.1021/nl101235d Google Scholar
40. Pendry, J. B., A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, "Capturing photons with transformation optics," Nat. Phys., Vol. 9, 518, 2013.
doi:10.1038/nphys2667 Google Scholar
41. Luo, Y., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Broadband light harvesting nanostructures robust to edge bluntness," Phys. Rev. Lett., Vol. 108, 023901, 2012.
doi:10.1103/PhysRevLett.108.023901 Google Scholar
42. Yeh, P., A. Yariv, and E. Marom, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, 423, 1977.
doi:10.1364/JOSA.67.000423 Google Scholar
43. Yeh, P., Optical Waves in Layered Media, Wiley, 1988.
44. Elser, J. and V. A. Podolskiy, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett., Vol. 90, 191109, 2007.
doi:10.1063/1.2737935 Google Scholar
45. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
46. Johnson, R. W., A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: From fundamentals to applications," Mater. Today, Vol. 17, 236-246, 2016. Google Scholar
47. Bassim, N., K. Scott, and L. A. Giannuzzi, "Recent advances in focused ion beam technology and applications," MRS Bulletin, Vol. 39, 317-325, 2014.
doi:10.1557/mrs.2014.52 Google Scholar