Vol. 174
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-04-30
TDFA-Band Silicon Optical Variable Attenuator
By
Progress In Electromagnetics Research, Vol. 174, 33-42, 2022
Abstract
TDFA-band (2-μm waveband) has been considered as a promising optical window for the next generation of optical communication and computing. Absorption modulation, one of the fundamental reconfigurable manipulations, is essential for large-scale photonic integrated circuits. However, few efforts have been involved in exploring absorption modulation at TDFA-band. In this work, variable optical attenuators (VOAs) for TDFA-band wavelengths were designed and fabricated based on a silicon-on-insulator (SOI) platform. By embedding a short PIN junction length of 200 μm into the waveguide, the fabricated VOA exhibits a high modulation depth of 40.49 dB at 2.2 V and has a fast response time (10 ns) induced by the plasma dispersion effect. Combining the Fabry-Perot cavity effect and plasma dispersion effect of silicon, the attenuator could achieve a maximum attenuation of more than 50 dB. These results promote the 2-μm waveband silicon photonic integration and are expected to the future use of photonic attenuators in crosstalk suppression, optical modulation, and optical channel equalization.
Citation
Maoliang Wei, Hui Ma, Chunlei Sun, Chuyu Zhong, Yuting Ye, Peng Zhang, Ruonan Liu, Junying Li, Lan Li, Bo Tang, and Hongtao Lin, "TDFA-Band Silicon Optical Variable Attenuator," Progress In Electromagnetics Research, Vol. 174, 33-42, 2022.
doi:10.2528/PIER22011302
References

1. Shen, W., J. Du, L. Sun, C. Wang, Y. Zhu, K. Xu, B. Chen, and Z. He, "Low-latency and high-speed hollow-core fiber optical interconnection at 2-micron waveband," Journal of Lightwave Technology, Vol. 38, No. 15, 3874-3882, 2020.        Google Scholar

2. Li, Z., A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, "Thulium-doped fiber amplifier for optical communications at 2 μm," Optics Express, Vol. 21, No. 8, 9289-9297, 2013.        Google Scholar

3. Soref, R., "Mid-infrared photonics in silicon and germanium," Nature Photonics, Vol. 4, No. 8, 495-497, 2010.        Google Scholar

4. Soref, R., "Enabling 2 μm communications," Nature Photonics, Vol. 9, No. 6, 358-359, 2015.        Google Scholar

5. Takenaka, M., Z. Zhao, C. P. Ho, T. Fujigaki, K. Toprasertpong, and S. Takagi, "Germanium mid-infrared integrated photonics on geoi platform," Conference on Lasers and Electro-Optics, Optical Society of America, San Jose, California, 2021.        Google Scholar

6. Zhao, Z., C. P. Ho, Q. Li, Z. Lin, K. Toprasertpong, S. Takagi, and M. Takenaka, "Efficient mid-infrared germanium variable optical attenuator fabricated by spin-on-glass doping," Journal of Lightwave Technology, Vol. 38, No. 17, 4808-4816, 2020.        Google Scholar

7. Kang, J., M. Takenaka, and S. Takagi, "Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits," Optics Express, Vol. 24, No. 11, 11855-11864, 2016.        Google Scholar

8. Li, X., J. X. B. Sia, W. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, H. Wang, and C. Liu, "Phase noise reduction of a 2 μm passively mode-locked laser through hybrid III-V/silicon integration," Optica, Vol. 8, No. 6, 855-860, 2021.        Google Scholar

9. Shen, W., P. Zeng, Z. Yang, D. Xia, J. Du, B. Zhang, K. Xu, Z. He, and Z. Li, "Chalcogenide glass photonic integration for improved 2 μm optical interconnection," Photonics Research, Vol. 8, No. 9, 1484-1490, 2020.        Google Scholar

10. Lin, H., Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo, H. Wang, S. Novak, A. Yadav, C.-C. Huang, R.-J. Shiue, D. Englund, T. Gu, D. Hewak, K. Richardson, J. Kong, and J. Hu, "Chalcogenide glass-on-graphene photonics," Nature Photonics, Vol. 11, No. 12, 798-805, 2017.        Google Scholar

11. Han, Z., P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, "On-chip mid-infrared gas detection using chalcogenide glass waveguide," Applied Physics Letters, Vol. 108, No. 14, 141106, 2016.        Google Scholar

12. Sadiq, M. U., H. Zhang, J. O. Callaghan, B. Roycroft, N. Kavanagh, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. R. Hayes, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, E. Pelucchi, P. O. Brien, F. H. Peters, F. Gunning, and B. Corbett, "40 Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach-Zehnder modulator at 2 μm," Journal of Lightwave Technology, Vol. 34, No. 8, 1706-1711, 2016.        Google Scholar

13. Yang, C.-A., S.-W. Xie, Y. Zhang, J.-M. Shang, S.-S. Huang, Y. Yuan, F.-H. Shao, Y. Zhang, Y.-Q. Xu, and Z.-C. Niu, "High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm," Applied Physics Letters, Vol. 114, No. 1, 021102, 2019.        Google Scholar

14. Wang, R., S. Sprengel, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, "Broad wavelength coverage 2.3 μm III-V-on-silicon DFB laser array," Optica, Vol. 4, No. 8, 972-975, 2017.        Google Scholar

15. Ackert, J. J., D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, "High-speed detection at two micrometres with monolithic silicon photodiodes," Nature Photonics, Vol. 9, No. 6, 393-396, 2015.        Google Scholar

16. Cao, W., D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J.Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, "High-speed silicon modulators for the 2 μm wavelength band," Optica, Vol. 5, No. 9, 1055-1062, 2018.        Google Scholar

17. Hattasan, N., B. Kuyken, F. Leo, E. M. P. Ryckeboer, D. Vermeulen, and G. Roelkens, "High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared," IEEE Photonics Technology Letters, Vol. 24, No. 17, 1536-1538, 2012.        Google Scholar

18. Ma, H., H. Yang, B. Tang, M. Wei, J. Li, J. Wu, P. Zhang, C. Sun, L. Li, and H. Lin, "Passive devices at 2 μm wavelength on 200mm CMOS-compatible silicon photonics platform [Invited]," Chinese Optics Letters, Vol. 19, No. 7, 071301, 2021.        Google Scholar

19. Zhong, C., H. Ma, C. Sun, M. Wei, Y. Ye, B. Tang, P. Zhang, R. Liu, J. Li, L. Li, and H. Lin, "Fast thermo-optical modulators with doped-silicon heaters operating at 2 μm," Optics Express, Vol. 29, No. 15, 23508-23516, 2021.        Google Scholar

20. Wang, Z., Y. Liu, Z. Wang, Y. Liu, J. Du, Q. Song, and K. Xu, "Ultra-broadband 3 dB power splitter from 1.55 to 2 μm wave band," Optics Letters, Vol. 46, No. 17, 4232-4235, 2021.        Google Scholar

21. Guo, J., J. Li, C. Liu, Y. Yin, W. Wang, Z. Ni, Z. Fu, H. Yu, Y. Xu, Y. Shi, Y. Ma, S. Gao, L. Tong, and D. Dai, "High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm," Light: Science & Applications, Vol. 9, No. 1, 29, 2020.        Google Scholar

22. Duan, F., K. Chen, D. Chen, and Y. Yu, "Low-power and high-speed 2×2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure," Optics Letters, Vol. 46, No. 1, 234-237, 2021.        Google Scholar

23. Jain, P., A. K. Singh, J. K. Pandey, S. Bansal, N. Sardana, S. Kumar, N. Gupta, and A. K. Singh, "An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber," Journal of Electronic Materials, Vol. 50, No. 3, 1506-1513, 2021.        Google Scholar

24. Jain, P., A. K. Singh, J. K. Pandey, S. Garg, S. Bansal, M. Agarwal, S. Kumar, N. Sardana, N. Gupta, and A. K. Singh, "Ultra-thin metamaterial perfect absorbers for single-/dual-/multi-band microwave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 5, 390-396, 2020.        Google Scholar

25. Ros, C., N. Youngblood, Z. Cheng, M. Le Gallo, H. P. Pernice Wolfram, C. D. Wright, A. Sebastian, and H. Bhaskaran, "In-memory computing on a photonic platform," Science Advances, Vol. 5, No. 1, eaau5759, 2019.        Google Scholar

26. Cheng, Z. G., C. Rios, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran, "On-chip photonic synapse," Science Advances, Vol. 3, No. 9, e1700160, 2017.        Google Scholar

27. Feldmann, J., N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran, "Parallel convolutional processing using an integrated photonic tensor core," Nature, Vol. 589, No. 7840, 52-58, 2021.        Google Scholar

28. Sun, C., M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, "Single-chip microprocessor that communicates directly using light," Nature, Vol. 528, No. 7583, 534-538, 2015.        Google Scholar

29. Zhang, W. and J. Yao, "A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing," Nature Communications, Vol. 9, No. 1, 1396, 2018.        Google Scholar

30. Zhang, W. and J. Yao, "Photonic integrated field-programmable disk array signal processor," Nature Communications, Vol. 11, No. 1, 406, 2020.        Google Scholar

31. Feldmann, J., N. Youngblood, X. Li, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, "Integrated 256 cell photonic phase-change memory with 512-bit capacity," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 26, No. 1, 1-7, 2020.        Google Scholar

32. Shen, Y., N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, "Deep learning with coherent nanophotonic circuits," Nature Photonics, Vol. 11, No. 7, 441-446, 2017.        Google Scholar

33. Feldmann, J., N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Vol. 569, No. 7755, 208-214, 2019.        Google Scholar

34. Wu, C., H. Yu, S. Lee, R. Peng, I. Takeuchi, and M. Li, "Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network," Nature Communications, Vol. 12, No. 1, 96, 2021.        Google Scholar

35. Xu, S., J. Wang, H. Shu, Z. Zhang, S. Yi, B. Bai, X. Wang, J. Liu, and W. Zou, "Optical coherent dot-product chip for sophisticated deep learning regression," Light: Science & Applications, Vol. 10, No. 1, 221, 2021.        Google Scholar

36. Xu, X., L. Zhu, W. Zhuang, D. Zhang, P. Yuan, and L. Lu, "Photoelectric hybrid convolution neural network with coherent nanophotonic circuits," Optical Engineering, Vol. 60, No. 11, 2021.        Google Scholar

37. Kang, G., C.-H. Youn, K. Yu, H.-H. Park, S.-H. Kim, J.-B. You, D.-S. Lee, H. Yoon, Y.-G. Ha, J.-H. Kim, D.-E. Yoo, and D.-W. Lee, "Silicon-based optical phased array using electro-optic p-i-n phase shifters," IEEE Photonics Technology Letters, Vol. 31, No. 21, 1685-1688, 2019.        Google Scholar

38. Miller, S. A., Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. Jimenez Gordillo, U. D. Dave, and M. Lipson, "Large-scale optical phased array using a low-power multi-pass silicon photonic platform," Optica, Vol. 7, No. 1, 3-6, 2020.        Google Scholar

39. Teodoro, G., S. Hamed, S. Tae Joon, H. Sangyoon, C. W. Ming, and Q. Niels, "Silicon photonic MEMS variable optical attenuator," Proc. SPIE, 2018.        Google Scholar

40. El-Fiky, E., M. Jacques, A. Samani, L. H. Xu, M. G. Saber, and D. V. Plant, "C-band and O-band silicon photonic based low-power variable optical attenuators," IEEE Photonics Journal, Vol. 11, No. 4, 2019.        Google Scholar

41. Wang, X., W. Shen, W. Li, Y. Liu, Y. Yao, J. Du, Q. Song, and K. Xu, "High-speed silicon photonic Mach-Zehnder modulator at 2 μm," Photonics Research, Vol. 9, No. 4, 535-540, 2021.        Google Scholar

42. Shen, L., M. Huang, S. Zheng, L. Yang, X. Peng, X. Cao, S. Li, and J. Wang, "High-performance silicon 2×2 thermo-optic switch for the 2 μm wavelength band," IEEE Photonics Journal, Vol. 11, No. 4, 1-6, 2019.        Google Scholar

43. Shen, W., J. Du, K. Xu, and Z. He, "On-chip selective dual-mode switch for 2-μm wavelength high-speed optical interconnection," IEEE Photonics Technology Letters, Vol. 33, No. 10, 483-486, 2021.        Google Scholar

44. Dong, P., W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, "Thermally tunable silicon racetrack resonators with ultralow tuning power," Optics Express, Vol. 18, No. 19, 20298-20304, 2010.        Google Scholar

45. Nedeljkovic, M., R. Soref, and G. Z. Mashanovich, "Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14 μm infrared wavelength range," IEEE Photonics Journal, Vol. 3, No. 6, 1171-1180, 2011.        Google Scholar

46. Reed, G. T., G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, Vol. 4, No. 8, 518-526, 2010.        Google Scholar

47. Thomson, D. J., L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, "Optical detection and modulation at 2 μm-2.5 μm in silicon," Optics Express, Vol. 22, No. 9, 10825-10830, 2014.        Google Scholar

48. Baba, T., S. Akiyama, M. Imai, and T. Usuki, "25-Gb/s broadband silicon modulator with 0.31-V.cm VπL based on forward-biased PIN diodes embedded with passive equalizer," Optics Express, Vol. 23, No. 26, 32950-32960, 2015.        Google Scholar