Vol. 174
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-07-05
A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition
By
Progress In Electromagnetics Research, Vol. 174, 127-141, 2022
Abstract
Despite recent advances, fast and reliable Human Activity Recognition in confined space is still an open problem related to many real-world applications, especially in health and biomedical monitoring. With the ubiquitous presence of Wi-Fi networks, the activity recognition and classification problems can be solved by leveraging some characteristics of the Channel State Information of the 802.11 standard. Given the well-documented advantages of Deep Learning algorithms in solving complex pattern recognition problems, many solutions in the Human Activity Recognition domain are taking advantage of those models. To improve the time and precision of activity classification of time-series data stemming from Channel State Information, we propose herein a fast deep neural model encompassing concepts not only from state-of-the-art recurrent neural networks, but also using convolutional operators with added randomization. Results from real data in an experimental environment show promising results.
Citation
Federico Succetti Antonello Rosato Francesco Di Luzio Andrea Ceschini Massimo Panella , "A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition," Progress In Electromagnetics Research, Vol. 174, 127-141, 2022.
doi:10.2528/PIER22042605
http://www.jpier.org/PIER/pier.php?paper=22042605
References

1. Tian, Y., S. Li, C. Chen, Q. Zhang, C, Zhuang, and X. Ding, "Small CSI samples-based activity recognition: A deep learning approach using multidimensional features," Security and Communication Networks, Vol. 2021, 5632298, 2021.
doi:

504 Gateway Time-out


2. O'Neill, J., "An overview of neural network compression,", 2020.
doi:The server didn't respond in time.

3. Foerster, F., M. Smeja, and J. Fahrenberg, "Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring," Computers in Human Behavior, Vol. 15, No. 5, 571-583, 1999.
doi:10.1016/S0747-5632(99)00037-0

4. Shalaby, E., N. ElShennawy, and A. Sarhan, "Utilizing deep learning models in CSI-based human activity recognition," Neural Computing and Applications, 1-18, 2022.

5. Golestani, N. and M. Moghaddam, "Magnetic induction-based human activity recognition (MI-HAR)," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, IEEE, 2019.

6. Delahoz, Y. S. and M. A. Labrador, "Survey on fall detection and fall prevention using wearable and external sensors," Sensors, Vol. 14, No. 10, 19806-19842, 2014.
doi:10.3390/s141019806

7. Politi, O., I. Mporas, and V. Megalooikonomou, "Human motion detection in daily activity tasks using wearable sensors," 2014 22nd European Signal Processing Conference (EUSIPCO), IEEE, 2014.

8. Jobanputra, C., J. Bavishi, and N. Doshi, "Human activity recognition: A survey," Procedia Computer Science, Vol. 155, 698-703, 2019.
doi:10.1016/j.procs.2019.08.100

9. Vrigkas, M., C. Nikou, and I. A. Kakadiaris, "A review of human activity recognition methods," Frontiers in Robotics and AI, Vol. 2, 2015.

10. Wang, H., D. Zhang, Y. Wang, J. Ma, Y. Wang, and S. Li, "RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices," IEEE Transactions on Mobile Computing, Vol. 16, No. 2, 511-526, 2016.
doi:10.1109/TMC.2016.2557795

11. Wang, Y., K. Wu, and L. M. Ni, "Wifall: Device-free fall detection by wireless networks," IEEE Transactions on Mobile Computing, Vol. 16, No. 2, 581-594, 2016.
doi:10.1109/TMC.2016.2557792

12. Murad, A. and J.-Y. Pyun, "Deep recurrent neural networks for human activity recognition," Sensors, Vol. 17, No. 11, 2017.
doi:10.3390/s17112556

13. Moshiri, F., R. Shahbazian, M. Nabati, and S. A. Ghorashi, "A CSI-based human activity recognition using deep learning," Sensors, Vol. 21, No. 21, 2021.

14. Ibrahim, M., M. Torki, and M. ElNainay, "CNN based indoor localization using RSS time-series," 2018 IEEE Symposium on Computers and Communications (ISCC), IEEE, 2018.

15. Halperin, D., W. Hu, A. Sheth, and D. Wetherall, "Tool release: Gathering 802.11 n traces with channel state information," ACM SIGCOMM Computer Communication Review, Vol. 41, No. 1, 53-53, 2011.
doi:10.1145/1925861.1925870

16. Lv, J., W. Yang, X. Du, and M. Yu, "Robust WLAN-based indoor intrusion detection using PHY layer information," IEEE Access, Vol. 6, 30117-30127, 2017.

17. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, Vol. 20, 273-297, 1995.

18. Breiman, L., "Random forests," Machine Learning, Vol. 45, 5-32, 2001.
doi:10.1023/A:1010933404324

19. Xi, W., J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang, "Electronic frog eye: Counting crowd using WiFi," IEEE INFOCOM 2014 | IEEE Conference on Computer Communications, IEEE, 2014.

20. Liu, X., J. Cao, S. Tang, and J. Wen, "Wi-Sleep: Contactless sleep monitoring via WiFi signals," 2014 IEEE Real-Time Systems Symposium, IEEE, 2014.

21. Liu, J., Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, "Tracking vital signs during sleep leveraging off-the-shelf WiFi," Proceedings of the 16th ACM International Symposium on Mobile ad hoc Networking and Computing, 2015.

22. Wang, Y., J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, "E-eyes: Device-free location- oriented activity identification using fine-grained WiFi signatures," Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, 2014.

23. He, Z., "Deep learning in image classification: A survey report," 2020 2nd International Conference on Information Technology and Computer Application (ITCA), IEEE, 2020.
doi:10.1109/TNNLS.2020.2979670

24. Otter, D. W., J. R. Medina, and J. K. Kalita, "A survey of the usages of deep learning for natural language processing," IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 2, 604-624, 2020.

25. Kumar, A., S. Verma, and H. Mangla, "A survey of deep learning techniques in speech recognition," 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), IEEE, 2018.
doi:10.1038/s41591-018-0316-z

26. Esteva, A., A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, "A guide to deep learning in healthcare," Nature Medicine, Vol. 25, No. 1, 24-29, 2019.

27. Rosato, A., M. Panella, A. Andreotti, A. M. Osama, and R. Araneo, "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, 291, 2021.

28. Rizzi, A., N. M. Buccino, M. Panella, and A. Uncini, "Genre classification of compressed audio data," 2008 IEEE 10th Workshop on Multimedia Signal Processing, 654-659, IEEE, 2008.

29. Erhan, D., P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, "The difficulty of training deep architectures and the effect of unsupervised pre-training," Artificial Intelligence and Statistics, PMLR, 2009.

30. Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," Proceedings of the 25th International Conference on Machine Learning, 2008.

31. Fukushima, K., "Neocognitron: A hierarchical neural network capable of visual pattern recognition," Neural networks, Vol. 1, No. 2, 119-130, 1988.

32. Hochreiter, S. and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol. 9, No. 8, 1735-1780, 1997.

33. Grushin, A., D. D. Monner, J. A. Reggia, and A. Mishra, "Robust human action recognition via long short-term memory," The 2013 International Joint Conference on Neural Networks (IJCNN), IEEE, 2013.

34. Schafer, B., B. R. Barrsiwal, M. Kokhkharova, H. Adil, and J. Liebehenschel, "Human activity recognition using CSI information with nexmon," Appl. Sci., Vol. 11, 8860, 2021.

35. Chen, Z., L. Zhang, C. Jiang, Z. Cao, and W. Cui, "WiFi CSI based passive human activity recognition using attention based BiLSTM," IEEE Transactions on Mobile Computing, Vol. 18, No. 11, 2714-2724, 2018.

36. Khan, D. A., S. Razak, B. Raj, and R. Singh, "Human behaviour recognition using WiFi channel state information," ICASSP 2019 --- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019.

37. Sheng, B., F. Xiao, L. Sha, and L. Sun, "Deep spatial-temporal model based cross-scene action recognition using commodity WiFi," IEEE Internet of Things Journal, Vol. 7, No. 4, 3592-3601, 2020.

38. Damodaran, N., E. Haruni, M. Kokhkharova, and J. Schafer, "Device free human activity and fall recognition using WiFi Channel State Information (CSI)," CCF Transactions on Pervasive Computing and Interaction, Vol. 2, No. 1, 1-17, 2020.

39. Alsaify, B. A., M. M. Almazari, R. Alazrai, S. Alouneh, and M. I. Daoud, "A CSI-based multi-environment human activity recognition framework," Appl. Sci., Vol. 12, 930, 2022.

40. Schafer, J., "CSI human activity," IEEE Dataport, August 2, 2021.

41. Kingma, D. and J. Ba, "Adam: A method for stochastic optimization," International Conference on Learning Representations, 2014.