1. Engheta, N. and R. W. Ziolkowsky, Metamaterials, Physics and Engineering Exploration, JohnWiley and Sons, 2006.
2. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels andbends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006. Google Scholar
3. Edwards, B., A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-nearzero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, No. 3, 033903, 2008. Google Scholar
4. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, No. 2, 023903, 2008. Google Scholar
5. Adams, D. C., S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, "Funneling light through a subwavelength aperture with epsilon-near-zero materials," Phys. Rev. Lett., Vol. 107, 133901, 2011. Google Scholar
6. Subramania, G., A. J. Fischer, and T. S. Luk, "Optical properties of metal-dielectric based epsilon near zerometamaterials," Appl. Phys. Lett., Vol. 101, 241107, 2012. Google Scholar
7. Maas, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nat. Photon., Vol. 7, No. 11, 907-912, 2013. Google Scholar
8. Yang, X., C. Hu, H. Deng, D. Rosenmann, D. A. Czaplewski, and J. Gao, "Experimental demonstration of near infrared epsilon-near-zero multilayer metamaterial slabs," Opt. Express, Vol. 21, 23631, 2013. Google Scholar
9. Engheta, N., "Materials science. Pursuing near-zero response," Science, Vol. 340, 286, 2013. Google Scholar
10. Pacheco-Peña, V., V. Torres, B. Orazbayev, M. Beruete, M. Navarro-Cía, M. Sorolla Ayza, and N. Engheta, "Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna," Appl. Phys. Lett., Vol. 105, 243503, 2014. Google Scholar
11. Pacheco-Peña, V., V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, "ϵ-near-zero (ENZ) graded index quasi-optical devices: Steering and splitting millimeter waves," J. Opt., Vol. 16, 094009, 2014. Google Scholar
12. Pacheco-Peña, V., N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, "Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies," Phys. Rev. Appl., Vol. 8, 034036, 2017. Google Scholar
13. Niu, X., X. Hu, S. Chu, and Q. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018. Google Scholar
14. Pollard, R. J., A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A.Wurtz, A. V. Zayats, and V. A. Podolskiy, "Optical nonlocalities and additional waves in epsilon-near-zero metamaterials," Phys. Rev. Lett., Vol. 102, 127405, 2009. Google Scholar
15. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011. Google Scholar
16. Gao, J., L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, "Experimental realization of epsilonnear-zero metamaterial stacks with metal-dielectric multilayers," Appl. Phys. Lett., Vol. 103, 051111, 2013. Google Scholar
17. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007. Google Scholar
18. Argyropoulos, C., P. Chen, G. D'Aguanno, N. Engheta, and A. Alù, "Boosting optical nonlinearities in ε-near-zero plasmonic channels," Phys. Rev. B, Vol. 85, 045129, 2012. Google Scholar
19. Hu, S. Y., Z. W. Guo, L. J. Dong, F. S. Deng, H. T. Jiang, and H. Chen, "Enhanced magneto- optical effect in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals," Frontiers in Mater, Vol. 9, 843265, 2022. Google Scholar
20. Wang, C., C. Qian, H. Hu, L. Shen, Z. J. Wang, H. P. Wang, Z. W. Xu, B. L. Zhang, H. S. Chen, and X. Lin, "Superscattering of light in refractive-index near-zero environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020. Google Scholar
21. Javani, M. H. and M. I. Stockman, "Real and imaginary properties of epsilon-near-zero materials," Phys. Rev. Lett., Vol. 117, 107404, 2016. Google Scholar
22. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy inphotonic crystals and zero-refractive-index materials," Nat. Mater., Vol. 10, 582, 2011. Google Scholar
23. Pollès, R., E. Centeno, J. Arlandis, and A. Moreau, "Self-collimation and focusing effects in zero- average indexmetamaterials," Opt. Express, Vol. 19, 6149, 2011. Google Scholar
24. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero index optical metamaterial," Nat. Photon., Vol. 7, 791, 2013. Google Scholar
25. Li, Y., S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur, "On-chip zero indexmaterials," Nat. Photon., Vol. 9, 738, 2015. Google Scholar
26. Wang, X., H. Jiang, Y Li, C. Yan, F. Deng, Y. Sun, Y. Li, Y. Shi, and H. Chen, "Transport properties of disordered photonic crystals around a Dirac-like point," Opt. Express, Vol. 23, 5126, 2015. Google Scholar
27. Liberal, I. and N. Engheta, "Near-zero refractive index photonics," Nat. Photon., Vol. 11, 149, 2017. Google Scholar
28. Guo, Z., H. Jiang, K. Zhu, Y. Sun, Y. Li, and H. Chen, "Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials," Phys. Rev. Appl., Vol. 10, 064048, 2018. Google Scholar
29. Guo, Z., H. Jiang, and H. Chen, "Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials," J. Phys.: Photon., Vol. 2, 011001, 2020. Google Scholar
30. Guo, Z., H. Jiang, and H. Chen, "Abnormal wave propagation in tilted linear-crossing metamaterials," Adv. Photon. Res., Vol. 2, 2000071, 2020. Google Scholar
31. Chen, Y. Q., Z. Guo, Y. Wang, X. Chen, H. Jiang, and H. Chen, "Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media," Opt. Express, Vol. 28, 17064, 2020. Google Scholar
32. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, 651, 1987. Google Scholar
33. Durnin, J., J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, 1499, 1987. Google Scholar
34. Arlt, J., V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun., Vol. 197, 239, 2001. Google Scholar
35. Grier, D. G., "A revolution in optical manipulationm," Nature, Vol. 424, 21, 2003. Google Scholar
36. Matsuoka, Y., Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A, Vol. 84, 423, 2006. Google Scholar
37. Dholakia, K. and W. M. Lee, "Optical trapping takes shape: The use of structured light fields," Adv. Atomic. Molecular, Opt. Phys., Vol. 56, 261, 2008. Google Scholar
38. Woerdemann, M., C. Alpmann, M. Esseling, and C. Denz, "Advanced optical trapping by complex beam shaping," Laser Photon. Rev., Vol. 7, 839, 2013. Google Scholar
39. Turunen, J., A. Vasara, and A. T. Friberg, "Holographic generation of diffraction-free beams," Appl. Opt., Vol. 27, 3959, 1988. Google Scholar
40. Salo, J., J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, "Millimetre-wave bessel beams using computer holograms," Electron. Lett., Vol. 37, 834, 2001. Google Scholar
41. Meltaus, J., J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. AlaLaurinaho, J. Mallat, and A. Raisanen, "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theory Tech., Vol. 51, 1274, 2003. Google Scholar
42. Scott, G. and N. McArdle, "Efficient generation of nearly diffraction-free beams using an axicon," Opt. Eng., Vol. 31, 2640, 1992. Google Scholar
43. Monk, S., J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, "The generation of bessel beams at millimetrewave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213, 1999. Google Scholar
44. Golub, I., "Fresnel axicon," Opt. Lett., Vol. 31, 1890, 2006. Google Scholar
45. Yu, Y. and W. Dou, "Generation of pseudo-bessel beams at THz frequencies by use of binary axicons," Opt. Express, Vol. 17, 888, 2009. Google Scholar
46. Williams, W. B. and J. B. Pendry, "Generating bessel beams by use of localized modes," J. Opt. Soc. Am. A, Vol. 22, 992, 2005. Google Scholar
47. Lin, J., J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, "Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave," Phys. Rev. Lett., Vol. 109, 093904, 2012. Google Scholar
48. Salem, M., A. Kamel, and E. Niver, "Microwave bessel beams generation using guided modes," IEEE Trans. Antennas Propag., Vol. 59, 2241, 2011. Google Scholar
49. Li, Z., K. B. Alici, H. Caglayan, and E. Ozbay, "Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture," Phys. Rev. Lett., Vol. 102, 143901, 2009. Google Scholar
50. Kurt, H. and M. Turduev, "Generation of a two-dimensional limited-diffraction beam with self- healing ability by annular-type photonic crystals," J. Opt. Soc. Am. B, Vol. 29, 1245, 2012. Google Scholar
51. Cai, B. G., Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, "Generation of spatial Bessel beams using holographic metasurface," Opt. Express, Vol. 23, 7593, 2015. Google Scholar
52. Chen, W. T., M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, A. Zaidi, and F. Capasso, "Generation of wavelength-independent subwavelength Bessel beams using metasurfaces," Light. Sci. Appl., Vol. 6, e16259, 2017. Google Scholar
53. Wang, Z., S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, "High-efficiency generation of Bessel beams with transmissive metasurfaces," Appl. Phys. Lett., Vol. 112, 191901, 2018. Google Scholar
54. Ardaneh, K., R. Giust, B. Morel, and F. Courvoisier, "Generation of a Bessel beam in FDTD using a cylindrical antenna," Opt. Express, Vol. 28, 2895, 2020. Google Scholar
55. Yu, Y. Z. and W. B. Dou, "Properties of approximate Bessel beams at millimeter wavelengths generated by fractal conical lens," Progress In Electromagnetics Research, Vol. 87, 105-115, 2008. Google Scholar
56. Luan, J., S. Yang, D. Liu, and M. Zhang, "Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation," Opt. Express, Vol. 28, 3732, 2020. Google Scholar
57. Goutsoulas, M., D. Bongiovanni, D. Li, Z. Chen, and N. K. Efremidis, "Tunable self-similar Bessel- like beams of arbitrary order," Opt. Lett., Vol. 45, 1830, 2020. Google Scholar
58. Guo, Z. W., H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, "Actively controlling the topological transition of dispersionbased on electrically controllable metamaterials," Appl. Sci., Vol. 8, 596, 2018. Google Scholar
59. Guo, Z. W., H. T. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulationto applications," J. Appl. Phys., Vol. 127, 071101, 2020. Google Scholar
60. Palik, E. D., Handbook of Optical Constants of Solids, Academic, 1998.
61. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972. Google Scholar
62. Wu, Y., X. Hu, F. Wang, J. Yang, C. Lu, Y. Liu, H. Yang, and Q. Gong, "Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range," Phys. Rev. Applied, Vol. 12, 054021, 2019. Google Scholar
63. Vassant, S., A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, "Epsilon-near-zero mode for active optoelectronic devices," Phys. Rev. Lett., Vol. 109, 237401, 2012. Google Scholar
64. Guo, Z. W., Y. Long, H. T. Jiang, J. Ren, and H. Chen, "Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources," Adv. Photon., Vol. 3, 036001, 2021. Google Scholar
65. Guo, Z. W., H. T. Jiang, and H. Chen, "Zero-index and hyperbolic metacavities: Fundamentals and applications," J. Phys. D: Appl. Phys., Vol. 55, 083001, 2022. Google Scholar