Vol. 174
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-06-20 Featured Article
Bessel Beam Generated by the Zero-Index Metalens
By
Progress In Electromagnetics Research, Vol. 174, 89-106, 2022
Abstract
Bessel beam is an important propagation-invariant optical field. The size and shape of its central spot remain unchanged in the long-distance transmission process, which has a wide application prospect. In this paper, we find that zero-index media (ZIM) metalen can be designed to realize the unique Bessel beam. On the one hand, based on the metal-dielectric multilayered structure with sub-wavelength unit cells, the anisotropic epsilon-near-zero media (ENZ) metalen is proposed for generating the robust Bessel beam, which is immune to the defects placed in the transmission path or the inside of the structure. The ZIM metalens uncover that ENZ media provide a new way to generate Bessel beams beyond the conventional convex prisms. On the other hand, with the help of the uniform field distribution of ZIM, enhanced (multi-channel) Bessel beams based on multiple point sources (exit surfaces) are studied in the isotropic ENZ metalens. In addition, the Bessel beam generated by the ZIM metalen has also been extend to the epsilon-mu-near zero metamaterial realized by two dimensional photonic crystals. Our results not only provide a new way to generate Bessel beam based on the ZIM metalens, but also may enable their use in some optical applications, such as in fluorescence microscopy imaging, particle trapping, and wave-front tailoring.
Citation
Fusheng Deng, Zhiwei Guo, Mina Ren, Xiaoqiang Su, Lijuan Dong, Yanhong Liu, Yun Long Shi, and Hong Chen, "Bessel Beam Generated by the Zero-Index Metalens," Progress In Electromagnetics Research, Vol. 174, 89-106, 2022.
doi:10.2528/PIER22050401
References

1. Engheta, N. and R. W. Ziolkowsky, Metamaterials, Physics and Engineering Exploration, JohnWiley and Sons, 2006.

2. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels andbends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006.        Google Scholar

3. Edwards, B., A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-nearzero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, No. 3, 033903, 2008.        Google Scholar

4. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, No. 2, 023903, 2008.        Google Scholar

5. Adams, D. C., S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, "Funneling light through a subwavelength aperture with epsilon-near-zero materials," Phys. Rev. Lett., Vol. 107, 133901, 2011.        Google Scholar

6. Subramania, G., A. J. Fischer, and T. S. Luk, "Optical properties of metal-dielectric based epsilon near zerometamaterials," Appl. Phys. Lett., Vol. 101, 241107, 2012.        Google Scholar

7. Maas, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nat. Photon., Vol. 7, No. 11, 907-912, 2013.        Google Scholar

8. Yang, X., C. Hu, H. Deng, D. Rosenmann, D. A. Czaplewski, and J. Gao, "Experimental demonstration of near infrared epsilon-near-zero multilayer metamaterial slabs," Opt. Express, Vol. 21, 23631, 2013.        Google Scholar

9. Engheta, N., "Materials science. Pursuing near-zero response," Science, Vol. 340, 286, 2013.        Google Scholar

10. Pacheco-Peña, V., V. Torres, B. Orazbayev, M. Beruete, M. Navarro-Cía, M. Sorolla Ayza, and N. Engheta, "Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna," Appl. Phys. Lett., Vol. 105, 243503, 2014.        Google Scholar

11. Pacheco-Peña, V., V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, "ϵ-near-zero (ENZ) graded index quasi-optical devices: Steering and splitting millimeter waves," J. Opt., Vol. 16, 094009, 2014.        Google Scholar

12. Pacheco-Peña, V., N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, "Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies," Phys. Rev. Appl., Vol. 8, 034036, 2017.        Google Scholar

13. Niu, X., X. Hu, S. Chu, and Q. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018.        Google Scholar

14. Pollard, R. J., A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A.Wurtz, A. V. Zayats, and V. A. Podolskiy, "Optical nonlocalities and additional waves in epsilon-near-zero metamaterials," Phys. Rev. Lett., Vol. 102, 127405, 2009.        Google Scholar

15. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.        Google Scholar

16. Gao, J., L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, "Experimental realization of epsilonnear-zero metamaterial stacks with metal-dielectric multilayers," Appl. Phys. Lett., Vol. 103, 051111, 2013.        Google Scholar

17. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.        Google Scholar

18. Argyropoulos, C., P. Chen, G. D'Aguanno, N. Engheta, and A. Alù, "Boosting optical nonlinearities in ε-near-zero plasmonic channels," Phys. Rev. B, Vol. 85, 045129, 2012.        Google Scholar

19. Hu, S. Y., Z. W. Guo, L. J. Dong, F. S. Deng, H. T. Jiang, and H. Chen, "Enhanced magneto- optical effect in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals," Frontiers in Mater, Vol. 9, 843265, 2022.        Google Scholar

20. Wang, C., C. Qian, H. Hu, L. Shen, Z. J. Wang, H. P. Wang, Z. W. Xu, B. L. Zhang, H. S. Chen, and X. Lin, "Superscattering of light in refractive-index near-zero environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020.        Google Scholar

21. Javani, M. H. and M. I. Stockman, "Real and imaginary properties of epsilon-near-zero materials," Phys. Rev. Lett., Vol. 117, 107404, 2016.        Google Scholar

22. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy inphotonic crystals and zero-refractive-index materials," Nat. Mater., Vol. 10, 582, 2011.        Google Scholar

23. Pollès, R., E. Centeno, J. Arlandis, and A. Moreau, "Self-collimation and focusing effects in zero- average indexmetamaterials," Opt. Express, Vol. 19, 6149, 2011.        Google Scholar

24. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero index optical metamaterial," Nat. Photon., Vol. 7, 791, 2013.        Google Scholar

25. Li, Y., S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur, "On-chip zero indexmaterials," Nat. Photon., Vol. 9, 738, 2015.        Google Scholar

26. Wang, X., H. Jiang, Y Li, C. Yan, F. Deng, Y. Sun, Y. Li, Y. Shi, and H. Chen, "Transport properties of disordered photonic crystals around a Dirac-like point," Opt. Express, Vol. 23, 5126, 2015.        Google Scholar

27. Liberal, I. and N. Engheta, "Near-zero refractive index photonics," Nat. Photon., Vol. 11, 149, 2017.        Google Scholar

28. Guo, Z., H. Jiang, K. Zhu, Y. Sun, Y. Li, and H. Chen, "Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials," Phys. Rev. Appl., Vol. 10, 064048, 2018.        Google Scholar

29. Guo, Z., H. Jiang, and H. Chen, "Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials," J. Phys.: Photon., Vol. 2, 011001, 2020.        Google Scholar

30. Guo, Z., H. Jiang, and H. Chen, "Abnormal wave propagation in tilted linear-crossing metamaterials," Adv. Photon. Res., Vol. 2, 2000071, 2020.        Google Scholar

31. Chen, Y. Q., Z. Guo, Y. Wang, X. Chen, H. Jiang, and H. Chen, "Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media," Opt. Express, Vol. 28, 17064, 2020.        Google Scholar

32. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, 651, 1987.        Google Scholar

33. Durnin, J., J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, 1499, 1987.        Google Scholar

34. Arlt, J., V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun., Vol. 197, 239, 2001.        Google Scholar

35. Grier, D. G., "A revolution in optical manipulationm," Nature, Vol. 424, 21, 2003.        Google Scholar

36. Matsuoka, Y., Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A, Vol. 84, 423, 2006.        Google Scholar

37. Dholakia, K. and W. M. Lee, "Optical trapping takes shape: The use of structured light fields," Adv. Atomic. Molecular, Opt. Phys., Vol. 56, 261, 2008.        Google Scholar

38. Woerdemann, M., C. Alpmann, M. Esseling, and C. Denz, "Advanced optical trapping by complex beam shaping," Laser Photon. Rev., Vol. 7, 839, 2013.        Google Scholar

39. Turunen, J., A. Vasara, and A. T. Friberg, "Holographic generation of diffraction-free beams," Appl. Opt., Vol. 27, 3959, 1988.        Google Scholar

40. Salo, J., J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, "Millimetre-wave bessel beams using computer holograms," Electron. Lett., Vol. 37, 834, 2001.        Google Scholar

41. Meltaus, J., J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. AlaLaurinaho, J. Mallat, and A. Raisanen, "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theory Tech., Vol. 51, 1274, 2003.        Google Scholar

42. Scott, G. and N. McArdle, "Efficient generation of nearly diffraction-free beams using an axicon," Opt. Eng., Vol. 31, 2640, 1992.        Google Scholar

43. Monk, S., J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, "The generation of bessel beams at millimetrewave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213, 1999.        Google Scholar

44. Golub, I., "Fresnel axicon," Opt. Lett., Vol. 31, 1890, 2006.        Google Scholar

45. Yu, Y. and W. Dou, "Generation of pseudo-bessel beams at THz frequencies by use of binary axicons," Opt. Express, Vol. 17, 888, 2009.        Google Scholar

46. Williams, W. B. and J. B. Pendry, "Generating bessel beams by use of localized modes," J. Opt. Soc. Am. A, Vol. 22, 992, 2005.        Google Scholar

47. Lin, J., J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, "Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave," Phys. Rev. Lett., Vol. 109, 093904, 2012.        Google Scholar

48. Salem, M., A. Kamel, and E. Niver, "Microwave bessel beams generation using guided modes," IEEE Trans. Antennas Propag., Vol. 59, 2241, 2011.        Google Scholar

49. Li, Z., K. B. Alici, H. Caglayan, and E. Ozbay, "Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture," Phys. Rev. Lett., Vol. 102, 143901, 2009.        Google Scholar

50. Kurt, H. and M. Turduev, "Generation of a two-dimensional limited-diffraction beam with self- healing ability by annular-type photonic crystals," J. Opt. Soc. Am. B, Vol. 29, 1245, 2012.        Google Scholar

51. Cai, B. G., Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, "Generation of spatial Bessel beams using holographic metasurface," Opt. Express, Vol. 23, 7593, 2015.        Google Scholar

52. Chen, W. T., M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, A. Zaidi, and F. Capasso, "Generation of wavelength-independent subwavelength Bessel beams using metasurfaces," Light. Sci. Appl., Vol. 6, e16259, 2017.        Google Scholar

53. Wang, Z., S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, "High-efficiency generation of Bessel beams with transmissive metasurfaces," Appl. Phys. Lett., Vol. 112, 191901, 2018.        Google Scholar

54. Ardaneh, K., R. Giust, B. Morel, and F. Courvoisier, "Generation of a Bessel beam in FDTD using a cylindrical antenna," Opt. Express, Vol. 28, 2895, 2020.        Google Scholar

55. Yu, Y. Z. and W. B. Dou, "Properties of approximate Bessel beams at millimeter wavelengths generated by fractal conical lens," Progress In Electromagnetics Research, Vol. 87, 105-115, 2008.        Google Scholar

56. Luan, J., S. Yang, D. Liu, and M. Zhang, "Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation," Opt. Express, Vol. 28, 3732, 2020.        Google Scholar

57. Goutsoulas, M., D. Bongiovanni, D. Li, Z. Chen, and N. K. Efremidis, "Tunable self-similar Bessel- like beams of arbitrary order," Opt. Lett., Vol. 45, 1830, 2020.        Google Scholar

58. Guo, Z. W., H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, "Actively controlling the topological transition of dispersionbased on electrically controllable metamaterials," Appl. Sci., Vol. 8, 596, 2018.        Google Scholar

59. Guo, Z. W., H. T. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulationto applications," J. Appl. Phys., Vol. 127, 071101, 2020.        Google Scholar

60. Palik, E. D., Handbook of Optical Constants of Solids, Academic, 1998.

61. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.        Google Scholar

62. Wu, Y., X. Hu, F. Wang, J. Yang, C. Lu, Y. Liu, H. Yang, and Q. Gong, "Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range," Phys. Rev. Applied, Vol. 12, 054021, 2019.        Google Scholar

63. Vassant, S., A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, "Epsilon-near-zero mode for active optoelectronic devices," Phys. Rev. Lett., Vol. 109, 237401, 2012.        Google Scholar

64. Guo, Z. W., Y. Long, H. T. Jiang, J. Ren, and H. Chen, "Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources," Adv. Photon., Vol. 3, 036001, 2021.        Google Scholar

65. Guo, Z. W., H. T. Jiang, and H. Chen, "Zero-index and hyperbolic metacavities: Fundamentals and applications," J. Phys. D: Appl. Phys., Vol. 55, 083001, 2022.        Google Scholar