Vol. 174
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-06-07
A Review of Multifunctional Optical Gap-Surface Plasmon Metasurfaces
By
Progress In Electromagnetics Research, Vol. 174, 55-73, 2022
Abstract
Gap-surface plasmon (GSP) metasurfaces that consist of metallic resonators, a middle dielectric spacer, and a back metallic reflector have become an emerging research area due to their excellent properties, such as ease of fabrication, high efficiency, and unprecedented capabilities of controlling reflected fields. In this concise review, we introduce our efforts in exploring the physical principles and fascinating applications of multifunctional GSP metasurfaces in the optical range. Starting with a typical GSP meta-atom, we present the concept and mechanism of simultaneous and independent phase and polarization control. We then overview some typical applications of GSP metasurfaces, including beam-steering, surface plasmon polariton coupling, metalenses, meta-waveplates, and dynamical metasurfaces. The review is ended with a short perspective on future developments in this area.
Citation
Fei Ding, "A Review of Multifunctional Optical Gap-Surface Plasmon Metasurfaces," Progress In Electromagnetics Research, Vol. 174, 55-73, 2022.
doi:10.2528/PIER22020308
References

1. Veselago, V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.        Google Scholar

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory, Vol. 47, 2075-2084, 1999.        Google Scholar

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.        Google Scholar

4. Smith, D. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.        Google Scholar

5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.        Google Scholar

6. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.        Google Scholar

7. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.        Google Scholar

8. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, 1232009, 2013.        Google Scholar

9. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.        Google Scholar

10. Chen, H.-T., A. J. Taylor, and N. Yu, "A review of metasurfaces: Physics and applications," Rep. Prog. Phys., Vol. 79, 076401, 2016.        Google Scholar

11. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Rep. Prog. Phys., Vol. 81, 026401, 2018.        Google Scholar

12. Hsiao, H.-H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017.        Google Scholar

13. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Adv. Opt. Mater., Vol. 6, 1800415, 2018.        Google Scholar

14. Deng, Y. D., C. Wu, C. Meng, S. I. Bozhevolnyi, and F. Ding, "Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering," ACS Nano, Vol. 15, 18532-18540, 2021.        Google Scholar

15. Bozhevolnyi, S. I., "Effective-index modeling of channel plasmon polaritons," Opt. Express, Vol. 14, 9467-9476, 2006.        Google Scholar

16. Ding, F., Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, "A review of gap-surface plasmon metasurfaces: Fundamentals and applications," Nanophotonics, Vol. 7, 1129-1156, 2018.        Google Scholar

17. Yuan, H.-K., U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. Express, Vol. 15, 1076-1083, 2007.        Google Scholar

18. Cai, W., U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express, Vol. 15, 3333-3341, 2007.        Google Scholar

19. Søndergaard, T. and S. I. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007.        Google Scholar

20. Søndergaard, T. and S. I. Bozhevolnyi, "Metal nano-strip optical resonators," Opt. Express, Vol. 15, 4198-4204, 2007.        Google Scholar

21. Søndergaard, T., J. Jung, S. I. Bozhevolnyi, and G. Della Valle, "Theoretical analysis of gold nano-strip gap plasmon resonators," New J. Phys., Vol. 10, 105008, 2008.        Google Scholar

22. Nielsen, M. G., D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, "Continuous layer gap plasmon resonators," Opt. Express, Vol. 19, 19310-19322, 2011.        Google Scholar

23. Pors, A., O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, "Gap-plasmon-based metasurfaces for total control of reflected light," Sci. Rep., Vol. 3, 2155, 2013.        Google Scholar

24. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Express, Vol. 21, 27438-27451, 2013.        Google Scholar

25. Fan, S., W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A, Vol. 20, 569, 2003.        Google Scholar

26. Wu, C., B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, "Large-area wide-angle spectrally selective plasmonic absorber," Phys. Rev. B, Vol. 84, 07512, 2011.        Google Scholar

27. Qu, C., S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, "Tailor the functionalities of metasurfaces based on a complete phase diagram," Phys. Rev. Lett., Vol. 115, 235503, 2015.        Google Scholar

28. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.        Google Scholar

29. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic matematerial," Appl. Phys. Lett., Vol. 96, 251104, 2010.        Google Scholar

30. Nielsen, M. G., A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, "Efficient absorption of visible radiation by gap plasmon resonators," Opt. Express, Vol. 20, 13311-13319, 2012.        Google Scholar

31. Hao, J., Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, "Optical metamaterial for polarization control," Phys. Rev. A, Vol. 80, 023807, 2009.        Google Scholar

32. Pors, A., M. G. Nielsen, and S. I. Bozhevolnyi, "Broadband plasmonic half-wave plates in reflection," Opt. Lett., Vol. 38, 513-515, 2013.        Google Scholar

33. Dai, Y. M., W. Z. Ren, H. B. Cai, H. Y. Ding, N. Pan, and X. P. Wang, "Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure," Opt. Express, Vol. 22, 7465, 2014.        Google Scholar

34. Jiang, Z. H., L. Lin, D. Ma, S. Yun, D. H. Werner, Z. W. Liu, and T. S. Mayer, "Broadband and wide field-of-view plasmonic metasurface-enabled waveplates," Sci. Rep., Vol. 4, 7511, 2014.        Google Scholar

35. Jiang, S. C., X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, "Controlling the polarization state of light with a dispersion-free metastructure," Phys. Rev. X, Vol. 4, 021026, 2014.        Google Scholar

36. Pors, A. and S. I. Bozhevolnyi, "Efficient and broadband quarter-wave plates by gap-plasmon resonators," Opt. Express, Vol. 21, 2942-2952, 2013.        Google Scholar

37. Heiden, J. T., F. Ding, J. Linnet, Y. Q. Yang, J. Beermann, and S. I. Bozhevolnyi, "Gap-surface plasmon metasurfaces for broadband circular-to-linear polarization conversion and vector vortex beam generation," Adv. Opt. Mater., Vol. 7, 1801414, 2019.        Google Scholar

38. Bomzon, Z., G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett., Vol. 27, 285-287, 2002.        Google Scholar

39. Bomzon, Z., G. Biener, V. Kleiner, and E. Hasman, "Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings," Opt. Lett., Vol. 27, 1141-1143, 2002.        Google Scholar

40. Qiu, Y. C., S. W. Tang, T. Cai, H. X. Xu, and F. Ding, "Fundamentals and applications of spin-decoupled Pancharatnam-Berry metasurfaces," Front. Optoelectron., Vol. 14, 134-147, 2021.        Google Scholar

41. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012.        Google Scholar

42. Monticone, F., N. M. Estakhri, and A. Alù, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.        Google Scholar

43. Ding, X., F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. Lustrac, Q. Wu, C. Qiu, and A. Alù, "Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency," Adv. Mater., Vol. 27, 1195-1200, 2015.        Google Scholar

44. Sun, S., K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient metasurfaces," Nano Lett., Vol. 12, 6223-6229, 2012.        Google Scholar

45. Farmahini-Farahani, M. and H. Mosallaei, "Birefringent reflectarray metasurface for beam engineering in infrared," Opt. Lett., Vol. 38, 462-464, 2013.        Google Scholar

46. Pors, A., M. G. Nielsen, and S. I. Bozhevolnyi, "Plasmonic metagratings for simultaneous determination of Stokes parameters," Optica, Vol. 2, 716-723, 2015.        Google Scholar

47. Jiang, S.-C., X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, "High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection," Phys. Rev. B, Vol. 91, 125421, 2015.        Google Scholar

48. Li, Z., E. Palacios, S. Butun, and K. Aydin, "Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting," Nano Lett., Vol. 15, 1615-1621, 2015.        Google Scholar

49. Gao, S., W. Yue, C. Park, S. Lee, E. Kim, and D. Choi, "Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light," ACS Photonics, Vol. 4, 322-328, 2017.        Google Scholar

50. Deshpande, R., A. Pors, and S. I. Bozhevolnyi, "Third-order gap plasmon based metasurfaces for visible light," Opt. Express, Vol. 25, 12508-12517, 2017.        Google Scholar

51. Deshpande, R. A., F. Ding, and S. Bozhevolnyi, "Dual-band metasurfaces using multiple gap-surface plasmon resonances," ACS Appl. Mater. Interfaces, Vol. 12, 1250-1256, 2020.        Google Scholar

52. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nat. Mater., Vol. 11, 426-431, 2012.        Google Scholar

53. Huang, L. L., X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Lett., Vol. 12, 5750-5755, 2012.        Google Scholar

54. Lin, D. M., P. Y. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science, Vol. 345, 298-302, 2014.        Google Scholar

55. Khorasaninejad, M. and K. B. Crozier, "Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter," Nat. Commun., Vol. 5, 5386, 2014.        Google Scholar

56. Zheng, G. X., H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nat. Nanotechnol., Vol. 10, 308-312, 2015.        Google Scholar

57. Wu, P. C., W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Lett., Vol. 17, 445-452, 2017.        Google Scholar

58. Pors, A., M. G. Nielsen, T. Bernardin, J. Weeber, and S. I. Bozhevolnyi, "Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons," Light: Sci. Appl., Vol. 3, e197, 2014.        Google Scholar

59. Mühlenbernd, H., P. Georgi, N. Pholchai, L. Huang, G. Li, S. Zhang, and T. Zentgraf, "Amplitude-and phase-controlled surface plasmon polariton excitation with metasurfaces," ACS Photonics, Vol. 3, 124-129, 2016.        Google Scholar

60. Ding, F., R. Deshpande, and S. I. Bozhevolnyi, "Bifunctional gap-plasmon metasurfaces for visible light: Polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence," Light Sci. Appl., Vol. 7, 17178, 2018.        Google Scholar

61. Meng, C., S. W. Tang, F. Ding, and S. I. Bozhevolnyi, "Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering," ACS Photonics, Vol. 7, 1849-1856, 2020.        Google Scholar

62. Li, X., S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012.        Google Scholar

63. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013.        Google Scholar

64. Boroviks, S., R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, "Multifunctional metamirror: Polarization splitting and focusing," ACS Photonics, Vol. 5, 1648-1653, 2018.        Google Scholar

65. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun., Vol. 8, 187, 2017.        Google Scholar

66. Goldstein, D. H., Polarized Light, CRC University, 2017.

67. Ding, F., S. W. Tang, and S. I. Bozhevolnyi, "Recent advances in polarization-encoded optical metasurfaces," Adv. Photonics Res., Vol. 2, 2000173, 2021.        Google Scholar

68. Ding, F., Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach," ACS Nano, Vol. 9, 4111-4119, 2015.        Google Scholar

69. Ding, F., Y. T. Chen, and S. I. Bozhevolnyi, "Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting," Photonics Res., Vol. 8, 707-714, 2020.        Google Scholar

70. Ding, F., Y. T. Chen, and S. I. Bozhevolnyi, "Focused vortex-beam generation using gap-surface plasmon metasurfaces," Nanophotonics, Vol. 9, 371-378, 2020.        Google Scholar

71. Ding, F., Y. Chen, Y. Yang, and S. I. Bozhevolnyi, "Multifunctional metamirrors for broadband focused vector-beam generation," Adv. Opt. Mater., Vol. 7, 1900724, 2019.        Google Scholar

72. Yue, F. Y., D. D. Wen, J. T. Xin, B. D. Gerardot, J. Li, and X. Z. Chen, "Vector vortex beam generation with a single plasmonic metasurface," ACS Photonics, Vol. 3, 1558-1563, 2016.        Google Scholar

73. Wang, D. Y., F. F. Liu, T. Liu, S. L. Sun, Q. He, and L. Zhou, "Efficient generation of complex vectorial optical fields with metasurfaces," Light Sci. Appl., Vol. 10, 67, 2021.        Google Scholar

74. Ding, F., R. Deshpande, C. Meng, and S. I. Bozhevolnyi, "Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality," Nanoscale, Vol. 12, 14106-14111, 2020.        Google Scholar

75. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.        Google Scholar

76. Zhan, Q., "Cylindrical vector beams: From mathematical concepts to applications," Adv. Opt. Photon., Vol. 1, 1-57, 2009.        Google Scholar

77. Forbes, A., M. de Oliveira, and M. R. Dennis, "Structured light," Nat. Photonics, Vol. 15, 253-262, 2021.        Google Scholar

78. Liu, F., O. Tsilipakos, A. Pitilakis, A. C. Tasolamprou, M. S. Mirmoosa, N. V. Kantartzis, D.-H. Kwon, J. Georgiou, K. Kossifos, M. A. Antoniades, M. Kafesaki, C. M. Soukoulis, and S. A. Tretyakov, "Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions," Phys. Rev. Appl., Vol. 11, 044024, 2019.        Google Scholar

79. Tsilipakos, O., A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S. Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos, A. Tsioliaridou, J. Georgiou, A. Cabellos-Aparicio, E. Alarcón, S. Io-annidis, A. Pitsillides, I. F. Akyildiz, N. V. Kantartzis, E. N. Economou, C. M. Soukoulis, M. Kafesaki, and S. Tretyakov, "Towards intelligent metasurfaces: The progress from globally tunable metasurfaces to software defined metasurfaces with an embedded network of controllers," Adv. Opt. Mater., Vol. 8, 2000783, 2020.        Google Scholar

80. Pitilakis, A., O. Tsilipakos, F. Liu, K. M. Kossifos, A. C. Tasolamprou, D.-H. Kwon, M. S. Mirmoosa, D. Manessis, N. V. Kantartzis, C. Liaskos, M. A. Antoniades, J. Georgiou, C. M. Soukoulis, M. Kafesaki, and S. A. Tretyakov, "A multi-functional recon gurable metasurface: Electromagnetic design accounting for fabrication aspects," IEEE Trans. Antennas Propag., Vol. 69, 1440-1454, 2021.        Google Scholar

81. Li, J., P. Yu, S. Zhang, and N. Liu, "Electrically-controlled digital metasurface device for light projection displays," Nat. Commun., Vol. 11, 3574, 2020.        Google Scholar

82. Yu, P., J. X. Li, and N. Liu, "Electrically tunable optical metasurfaces for dynamic polarization conversion," Nano Lett., Vol. 21, 6690-6695, 2021.        Google Scholar

83. Chu, C. H., M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser Photonics Rev., Vol. 10, 986-994, 2016.        Google Scholar

84. De Galarreta, C. R., A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, "Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared," Adv. Funct. Mater., Vol. 28, 1704993, 2018.        Google Scholar

85. Ding, F., Y. Yang, and S. I. Bozhevolnyi, "Dynamic metasurfaces using phase-change chalcogenides," Adv. Opt. Mater., Vol. 7, 1801709, 2019.        Google Scholar

86. Park, J., S. J. Kim, P. Landreman, and M. L. Brongersma, "An over-coupled phase-change metasurface for efficient reflection phase modulation," Adv. Opt. Mater., Vol. 8, 2000745, 2020.        Google Scholar

87. Zhang, Y., C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Rios, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, "Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material," Nat. Nanotechnol., Vol. 16, 661-666, 2021.        Google Scholar

88. Li, Z., K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, "Graphene plasmonic metasurfaces to steer infrared light," Sci. Rep., Vol. 5, 12423, 2015.        Google Scholar

89. Zeng, B., Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, "Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging," Light Sci. Appl., Vol. 7, 51, 2018.        Google Scholar

90. Wu, P. C., R. A. Pala, G. Kafaie Shirmanesh, W. H. Cheng, R. Sokhoyan, M. Grajower, M. Z. Alam, D. Lee, and H. A. Atwater, "Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces," Nat. Commun., Vol. 10, 3654, 2019.        Google Scholar

91. Neubrech, F., X. Duan, and N. Liu, "Dynamic plasmonic color generation enabled by functional materials," Sci. Adv., Vol. 6, eabc2709, 2020.        Google Scholar

92. Park, J., B. G. Jeong, S. I. Kim, D. Lee, J. Kim, C. Shin, C. B. Lee, T. Otsuka, J. Kyoung, S. Kim, K. Y. Yang, Y. Y. Park, J. Lee, I. Hwang, J. Jang, S. H. Song, M. L. Brongersma, K. Ha, S. W. Hwang, H. Choo, and B. L. Choi, "All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications," Nat. Nanotechnol., Vol. 16, 69-76, 2021.        Google Scholar

93. Meng, C., P. C. V. Thrane, F. Ding, J. Gjessing, M. Thomaschewski, C. Wu, C. Dirdal, and S. I. Bozhevolnyi, "Dynamic piezoelectric MEMS-based optical metasurfaces," Sci. Adv., Vol. 7, eabg5639, 2021.        Google Scholar

94. Damgaard-Carstensen, C., M. Thomaschewski, F. Ding, and S. Bozhevolnyi, "Electrical tuning of Fresnel lens in reflection," ACS Photonics, Vol. 8, 1576, 2021.        Google Scholar

95. He, T., T. Liu, S. Xiao, Z. Wei, Z. Wang, L, Zhou, and X. Cheng, "Perfect anomalous reflectors at optical frequencies," Sci. Adv., Vol. 8, eabk3381, 2022.        Google Scholar

96. Deshpande, R., V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, "Direct characterization of near-field coupling in gap plasmon-based metasurfaces," Nano Lett., Vol. 18, 6265-6270, 2018.        Google Scholar

97. Solntsev, A. S., G. S. Agarwal, and Y. S. Kivshar, "Metasurfaces for quantum photonics," Nat. Photonics, Vol. 15, 327-336, 2021.        Google Scholar

98. Kan, Y. H., S. K. H. Andersen, F. Ding, S. Kumar, C. Y. Zhao, and S. I. Bozhevolnyi, "Metasurface-enabled generation of circularly polarized single photons," Adv. Mater., Vol. 32, 1907832, 2020.        Google Scholar

99. Wu, C., S. Kumar, Y. H. Kan, D. Komisar, Z. M. Wang, S. I. Bozhevolnyi, and F. Ding, "Room-temperature on-chip orbital angular momentum single-photon sources," Sci. Adv., Vol. 8, eabk3075, 2022.        Google Scholar