1. Veselago, V., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968. Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory, Vol. 47, 2075-2084, 1999. Google Scholar
3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000. Google Scholar
4. Smith, D. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000. Google Scholar
5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001. Google Scholar
6. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007. Google Scholar
7. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011. Google Scholar
8. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, 1232009, 2013. Google Scholar
9. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014. Google Scholar
10. Chen, H.-T., A. J. Taylor, and N. Yu, "A review of metasurfaces: Physics and applications," Rep. Prog. Phys., Vol. 79, 076401, 2016. Google Scholar
11. Ding, F., A. Pors, and S. I. Bozhevolnyi, "Gradient metasurfaces: A review of fundamentals and applications," Rep. Prog. Phys., Vol. 81, 026401, 2018. Google Scholar
12. Hsiao, H.-H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017. Google Scholar
13. He, Q., S. Sun, S. Xiao, and L. Zhou, "High-efficiency metasurfaces: Principles, realizations, and applications," Adv. Opt. Mater., Vol. 6, 1800415, 2018. Google Scholar
14. Deng, Y. D., C. Wu, C. Meng, S. I. Bozhevolnyi, and F. Ding, "Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering," ACS Nano, Vol. 15, 18532-18540, 2021. Google Scholar
15. Bozhevolnyi, S. I., "Effective-index modeling of channel plasmon polaritons," Opt. Express, Vol. 14, 9467-9476, 2006. Google Scholar
16. Ding, F., Y. Q. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, "A review of gap-surface plasmon metasurfaces: Fundamentals and applications," Nanophotonics, Vol. 7, 1129-1156, 2018. Google Scholar
17. Yuan, H.-K., U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Opt. Express, Vol. 15, 1076-1083, 2007. Google Scholar
18. Cai, W., U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express, Vol. 15, 3333-3341, 2007. Google Scholar
19. Søndergaard, T. and S. I. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007. Google Scholar
20. Søndergaard, T. and S. I. Bozhevolnyi, "Metal nano-strip optical resonators," Opt. Express, Vol. 15, 4198-4204, 2007. Google Scholar
21. Søndergaard, T., J. Jung, S. I. Bozhevolnyi, and G. Della Valle, "Theoretical analysis of gold nano-strip gap plasmon resonators," New J. Phys., Vol. 10, 105008, 2008. Google Scholar
22. Nielsen, M. G., D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, "Continuous layer gap plasmon resonators," Opt. Express, Vol. 19, 19310-19322, 2011. Google Scholar
23. Pors, A., O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, "Gap-plasmon-based metasurfaces for total control of reflected light," Sci. Rep., Vol. 3, 2155, 2013. Google Scholar
24. Pors, A. and S. I. Bozhevolnyi, "Plasmonic metasurfaces for efficient phase control in reflection," Opt. Express, Vol. 21, 27438-27451, 2013. Google Scholar
25. Fan, S., W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators," J. Opt. Soc. Am. A, Vol. 20, 569, 2003. Google Scholar
26. Wu, C., B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, "Large-area wide-angle spectrally selective plasmonic absorber," Phys. Rev. B, Vol. 84, 07512, 2011. Google Scholar
27. Qu, C., S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, "Tailor the functionalities of metasurfaces based on a complete phase diagram," Phys. Rev. Lett., Vol. 115, 235503, 2015. Google Scholar
28. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010. Google Scholar
29. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic matematerial," Appl. Phys. Lett., Vol. 96, 251104, 2010. Google Scholar
30. Nielsen, M. G., A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, "Efficient absorption of visible radiation by gap plasmon resonators," Opt. Express, Vol. 20, 13311-13319, 2012. Google Scholar
31. Hao, J., Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, "Optical metamaterial for polarization control," Phys. Rev. A, Vol. 80, 023807, 2009. Google Scholar
32. Pors, A., M. G. Nielsen, and S. I. Bozhevolnyi, "Broadband plasmonic half-wave plates in reflection," Opt. Lett., Vol. 38, 513-515, 2013. Google Scholar
33. Dai, Y. M., W. Z. Ren, H. B. Cai, H. Y. Ding, N. Pan, and X. P. Wang, "Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure," Opt. Express, Vol. 22, 7465, 2014. Google Scholar
34. Jiang, Z. H., L. Lin, D. Ma, S. Yun, D. H. Werner, Z. W. Liu, and T. S. Mayer, "Broadband and wide field-of-view plasmonic metasurface-enabled waveplates," Sci. Rep., Vol. 4, 7511, 2014. Google Scholar
35. Jiang, S. C., X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, "Controlling the polarization state of light with a dispersion-free metastructure," Phys. Rev. X, Vol. 4, 021026, 2014. Google Scholar
36. Pors, A. and S. I. Bozhevolnyi, "Efficient and broadband quarter-wave plates by gap-plasmon resonators," Opt. Express, Vol. 21, 2942-2952, 2013. Google Scholar
37. Heiden, J. T., F. Ding, J. Linnet, Y. Q. Yang, J. Beermann, and S. I. Bozhevolnyi, "Gap-surface plasmon metasurfaces for broadband circular-to-linear polarization conversion and vector vortex beam generation," Adv. Opt. Mater., Vol. 7, 1801414, 2019. Google Scholar
38. Bomzon, Z., G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett., Vol. 27, 285-287, 2002. Google Scholar
39. Bomzon, Z., G. Biener, V. Kleiner, and E. Hasman, "Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings," Opt. Lett., Vol. 27, 1141-1143, 2002. Google Scholar
40. Qiu, Y. C., S. W. Tang, T. Cai, H. X. Xu, and F. Ding, "Fundamentals and applications of spin-decoupled Pancharatnam-Berry metasurfaces," Front. Optoelectron., Vol. 14, 134-147, 2021. Google Scholar
41. Ni, X., N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, "Broadband light bending with plasmonic nanoantennas," Science, Vol. 335, 427, 2012. Google Scholar
42. Monticone, F., N. M. Estakhri, and A. Alù, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013. Google Scholar
43. Ding, X., F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. Lustrac, Q. Wu, C. Qiu, and A. Alù, "Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency," Adv. Mater., Vol. 27, 1195-1200, 2015. Google Scholar
44. Sun, S., K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient metasurfaces," Nano Lett., Vol. 12, 6223-6229, 2012. Google Scholar
45. Farmahini-Farahani, M. and H. Mosallaei, "Birefringent reflectarray metasurface for beam engineering in infrared," Opt. Lett., Vol. 38, 462-464, 2013. Google Scholar
46. Pors, A., M. G. Nielsen, and S. I. Bozhevolnyi, "Plasmonic metagratings for simultaneous determination of Stokes parameters," Optica, Vol. 2, 716-723, 2015. Google Scholar
47. Jiang, S.-C., X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, "High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection," Phys. Rev. B, Vol. 91, 125421, 2015. Google Scholar
48. Li, Z., E. Palacios, S. Butun, and K. Aydin, "Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting," Nano Lett., Vol. 15, 1615-1621, 2015. Google Scholar
49. Gao, S., W. Yue, C. Park, S. Lee, E. Kim, and D. Choi, "Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light," ACS Photonics, Vol. 4, 322-328, 2017. Google Scholar
50. Deshpande, R., A. Pors, and S. I. Bozhevolnyi, "Third-order gap plasmon based metasurfaces for visible light," Opt. Express, Vol. 25, 12508-12517, 2017. Google Scholar
51. Deshpande, R. A., F. Ding, and S. Bozhevolnyi, "Dual-band metasurfaces using multiple gap-surface plasmon resonances," ACS Appl. Mater. Interfaces, Vol. 12, 1250-1256, 2020. Google Scholar
52. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nat. Mater., Vol. 11, 426-431, 2012. Google Scholar
53. Huang, L. L., X. Z. Chen, H. Muhlenbernd, G. X. Li, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Lett., Vol. 12, 5750-5755, 2012. Google Scholar
54. Lin, D. M., P. Y. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science, Vol. 345, 298-302, 2014. Google Scholar
55. Khorasaninejad, M. and K. B. Crozier, "Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter," Nat. Commun., Vol. 5, 5386, 2014. Google Scholar
56. Zheng, G. X., H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency," Nat. Nanotechnol., Vol. 10, 308-312, 2015. Google Scholar
57. Wu, P. C., W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Lett., Vol. 17, 445-452, 2017. Google Scholar
58. Pors, A., M. G. Nielsen, T. Bernardin, J. Weeber, and S. I. Bozhevolnyi, "Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons," Light: Sci. Appl., Vol. 3, e197, 2014. Google Scholar
59. Mühlenbernd, H., P. Georgi, N. Pholchai, L. Huang, G. Li, S. Zhang, and T. Zentgraf, "Amplitude-and phase-controlled surface plasmon polariton excitation with metasurfaces," ACS Photonics, Vol. 3, 124-129, 2016. Google Scholar
60. Ding, F., R. Deshpande, and S. I. Bozhevolnyi, "Bifunctional gap-plasmon metasurfaces for visible light: Polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence," Light Sci. Appl., Vol. 7, 17178, 2018. Google Scholar
61. Meng, C., S. W. Tang, F. Ding, and S. I. Bozhevolnyi, "Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering," ACS Photonics, Vol. 7, 1849-1856, 2020. Google Scholar
62. Li, X., S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, "Flat metasurfaces to focus electromagnetic waves in reflection geometry," Opt. Lett., Vol. 37, 4940-4942, 2012. Google Scholar
63. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing flat mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, 829-834, 2013. Google Scholar
64. Boroviks, S., R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, "Multifunctional metamirror: Polarization splitting and focusing," ACS Photonics, Vol. 5, 1648-1653, 2018. Google Scholar
65. Wang, S., P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nat. Commun., Vol. 8, 187, 2017. Google Scholar
66. Goldstein, D. H., Polarized Light, CRC University, 2017.
67. Ding, F., S. W. Tang, and S. I. Bozhevolnyi, "Recent advances in polarization-encoded optical metasurfaces," Adv. Photonics Res., Vol. 2, 2000173, 2021. Google Scholar
68. Ding, F., Z. X. Wang, S. L. He, V. M. Shalaev, and A. V. Kildishev, "Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach," ACS Nano, Vol. 9, 4111-4119, 2015. Google Scholar
69. Ding, F., Y. T. Chen, and S. I. Bozhevolnyi, "Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting," Photonics Res., Vol. 8, 707-714, 2020. Google Scholar
70. Ding, F., Y. T. Chen, and S. I. Bozhevolnyi, "Focused vortex-beam generation using gap-surface plasmon metasurfaces," Nanophotonics, Vol. 9, 371-378, 2020. Google Scholar
71. Ding, F., Y. Chen, Y. Yang, and S. I. Bozhevolnyi, "Multifunctional metamirrors for broadband focused vector-beam generation," Adv. Opt. Mater., Vol. 7, 1900724, 2019. Google Scholar
72. Yue, F. Y., D. D. Wen, J. T. Xin, B. D. Gerardot, J. Li, and X. Z. Chen, "Vector vortex beam generation with a single plasmonic metasurface," ACS Photonics, Vol. 3, 1558-1563, 2016. Google Scholar
73. Wang, D. Y., F. F. Liu, T. Liu, S. L. Sun, Q. He, and L. Zhou, "Efficient generation of complex vectorial optical fields with metasurfaces," Light Sci. Appl., Vol. 10, 67, 2021. Google Scholar
74. Ding, F., R. Deshpande, C. Meng, and S. I. Bozhevolnyi, "Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality," Nanoscale, Vol. 12, 14106-14111, 2020. Google Scholar
75. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized beam," Phys. Rev. Lett., Vol. 91, 233901, 2003. Google Scholar
76. Zhan, Q., "Cylindrical vector beams: From mathematical concepts to applications," Adv. Opt. Photon., Vol. 1, 1-57, 2009. Google Scholar
77. Forbes, A., M. de Oliveira, and M. R. Dennis, "Structured light," Nat. Photonics, Vol. 15, 253-262, 2021. Google Scholar
78. Liu, F., O. Tsilipakos, A. Pitilakis, A. C. Tasolamprou, M. S. Mirmoosa, N. V. Kantartzis, D.-H. Kwon, J. Georgiou, K. Kossifos, M. A. Antoniades, M. Kafesaki, C. M. Soukoulis, and S. A. Tretyakov, "Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions," Phys. Rev. Appl., Vol. 11, 044024, 2019. Google Scholar
79. Tsilipakos, O., A. C. Tasolamprou, A. Pitilakis, F. Liu, X. Wang, M. S. Mirmoosa, D. C. Tzarouchis, S. Abadal, H. Taghvaee, C. Liaskos, A. Tsioliaridou, J. Georgiou, A. Cabellos-Aparicio, E. Alarcón, S. Io-annidis, A. Pitsillides, I. F. Akyildiz, N. V. Kantartzis, E. N. Economou, C. M. Soukoulis, M. Kafesaki, and S. Tretyakov, "Towards intelligent metasurfaces: The progress from globally tunable metasurfaces to software defined metasurfaces with an embedded network of controllers," Adv. Opt. Mater., Vol. 8, 2000783, 2020. Google Scholar
80. Pitilakis, A., O. Tsilipakos, F. Liu, K. M. Kossifos, A. C. Tasolamprou, D.-H. Kwon, M. S. Mirmoosa, D. Manessis, N. V. Kantartzis, C. Liaskos, M. A. Antoniades, J. Georgiou, C. M. Soukoulis, M. Kafesaki, and S. A. Tretyakov, "A multi-functional recongurable metasurface: Electromagnetic design accounting for fabrication aspects," IEEE Trans. Antennas Propag., Vol. 69, 1440-1454, 2021. Google Scholar
81. Li, J., P. Yu, S. Zhang, and N. Liu, "Electrically-controlled digital metasurface device for light projection displays," Nat. Commun., Vol. 11, 3574, 2020. Google Scholar
82. Yu, P., J. X. Li, and N. Liu, "Electrically tunable optical metasurfaces for dynamic polarization conversion," Nano Lett., Vol. 21, 6690-6695, 2021. Google Scholar
83. Chu, C. H., M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser Photonics Rev., Vol. 10, 986-994, 2016. Google Scholar
84. De Galarreta, C. R., A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, "Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared," Adv. Funct. Mater., Vol. 28, 1704993, 2018. Google Scholar
85. Ding, F., Y. Yang, and S. I. Bozhevolnyi, "Dynamic metasurfaces using phase-change chalcogenides," Adv. Opt. Mater., Vol. 7, 1801709, 2019. Google Scholar
86. Park, J., S. J. Kim, P. Landreman, and M. L. Brongersma, "An over-coupled phase-change metasurface for efficient reflection phase modulation," Adv. Opt. Mater., Vol. 8, 2000745, 2020. Google Scholar
87. Zhang, Y., C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Rios, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, "Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material," Nat. Nanotechnol., Vol. 16, 661-666, 2021. Google Scholar
88. Li, Z., K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, "Graphene plasmonic metasurfaces to steer infrared light," Sci. Rep., Vol. 5, 12423, 2015. Google Scholar
89. Zeng, B., Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, and H. T. Chen, "Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging," Light Sci. Appl., Vol. 7, 51, 2018. Google Scholar
90. Wu, P. C., R. A. Pala, G. Kafaie Shirmanesh, W. H. Cheng, R. Sokhoyan, M. Grajower, M. Z. Alam, D. Lee, and H. A. Atwater, "Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces," Nat. Commun., Vol. 10, 3654, 2019. Google Scholar
91. Neubrech, F., X. Duan, and N. Liu, "Dynamic plasmonic color generation enabled by functional materials," Sci. Adv., Vol. 6, eabc2709, 2020. Google Scholar
92. Park, J., B. G. Jeong, S. I. Kim, D. Lee, J. Kim, C. Shin, C. B. Lee, T. Otsuka, J. Kyoung, S. Kim, K. Y. Yang, Y. Y. Park, J. Lee, I. Hwang, J. Jang, S. H. Song, M. L. Brongersma, K. Ha, S. W. Hwang, H. Choo, and B. L. Choi, "All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications," Nat. Nanotechnol., Vol. 16, 69-76, 2021. Google Scholar
93. Meng, C., P. C. V. Thrane, F. Ding, J. Gjessing, M. Thomaschewski, C. Wu, C. Dirdal, and S. I. Bozhevolnyi, "Dynamic piezoelectric MEMS-based optical metasurfaces," Sci. Adv., Vol. 7, eabg5639, 2021. Google Scholar
94. Damgaard-Carstensen, C., M. Thomaschewski, F. Ding, and S. Bozhevolnyi, "Electrical tuning of Fresnel lens in reflection," ACS Photonics, Vol. 8, 1576, 2021. Google Scholar
95. He, T., T. Liu, S. Xiao, Z. Wei, Z. Wang, L, Zhou, and X. Cheng, "Perfect anomalous reflectors at optical frequencies," Sci. Adv., Vol. 8, eabk3381, 2022. Google Scholar
96. Deshpande, R., V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, "Direct characterization of near-field coupling in gap plasmon-based metasurfaces," Nano Lett., Vol. 18, 6265-6270, 2018. Google Scholar
97. Solntsev, A. S., G. S. Agarwal, and Y. S. Kivshar, "Metasurfaces for quantum photonics," Nat. Photonics, Vol. 15, 327-336, 2021. Google Scholar
98. Kan, Y. H., S. K. H. Andersen, F. Ding, S. Kumar, C. Y. Zhao, and S. I. Bozhevolnyi, "Metasurface-enabled generation of circularly polarized single photons," Adv. Mater., Vol. 32, 1907832, 2020. Google Scholar
99. Wu, C., S. Kumar, Y. H. Kan, D. Komisar, Z. M. Wang, S. I. Bozhevolnyi, and F. Ding, "Room-temperature on-chip orbital angular momentum single-photon sources," Sci. Adv., Vol. 8, eabk3075, 2022. Google Scholar