1. Álvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038 Google Scholar
2. Ammari, H., "Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies," Lecture Notes in Mathematics: Mathematical Biosciences Subseries, Vol. 2035, Springer-Verlag, Berlin, 2011. Google Scholar
3. Ammari, H., J. Garnier, V. Jugnon, and H. Kang, "Stability and resolution analysis for a topological derivative based imaging functional," SIAM J. Control. Optim., Vol. 50, 48-76, 2012.
doi:10.1137/100812501 Google Scholar
4. Ammari, H., J. Garnier, H. Kang, W.-K. Park, and K. Sølna, "Imaging schemes for perfectly conducting cracks," SIAM J. Appl. Math., Vol. 71, 68-91, 2011.
doi:10.1137/100800130 Google Scholar
5. Ammari, H. and H. Kang, "Reconstruction of Small Inhomogeneities from Boundary Measurements," Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004. Google Scholar
6. Ammari, H., H. Kang, H. Lee, and W.-K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., Vol. 32, 894-922, 2010.
doi:10.1137/090749013 Google Scholar
7. Chen, X., "Subspace-based optimization method in electric impedance tomography ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.1163/156939309789476301 Google Scholar
8. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301 Google Scholar
9. Delbary, F., K. Erhard, R. Kress, R. Potthast, and J. Schulz, "Inverse electromagnetic scattering in a two-layered medium with an application to mine detection," Inverse Problems, Vol. 24, 015002, 2008.
doi:10.1088/0266-5611/24/1/015002 Google Scholar
10. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetic Research M, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206 Google Scholar
11. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetic Research M, Vol. 18, 179-195, 2011. Google Scholar
12. Colton, D., H. Haddar, and P. Monk, "The linear sampling method for solving the electromagnetic inverse scattering problem," SIAM J. Sci. Comput., Vol. 24, 719-731, 2002. Google Scholar
13. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01 Google Scholar
14. Griesmaier, R., "Multi-frequency orthogonality sampling for inverse obstacle scattering problems," Inverse Problems, Vol. 27, 085005, 2011.
doi:10.1088/0266-5611/27/8/085005 Google Scholar
15. Hou, S., K. Huang, K. Sølna, and H. Zhao, "A phase and space coherent direct imaging method," J. Acoust. Soc. Am., Vol. 125, 227-238, 2009.
doi:10.1121/1.3035835 Google Scholar
16. Kwon, O., J. K. Seo, and J.-R. Yoon, "A real-time algorithm for the location search of discontinuous conductivities with one measurement," Commun. Pur. Appl. Math., Vol. 55, 1-29, 2002.
doi:10.1002/cpa.3009 Google Scholar
17. Lesselier, D. and B. Duchene, "Buried, 2-D penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field," Progress In Electromagnetic Research, Vol. 5, 351-389, 1991. Google Scholar
18. Ma, Y.-K., P.-S. Kim, and W.-K. Park, "Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducing cracks," Progress In Electromagnetics Research, Vol. 122, 311-325, 2012.
doi:10.2528/PIER11092901 Google Scholar
19. Park, W.-K., "Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response matrix," Progress In Electromagnetics Research, Vol. 106, 225-241, 2010.
doi:10.2528/PIER10052506 Google Scholar
20. Park, W.-K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008 Google Scholar
21. Park, W.-K., "On the imaging of thin dielectric inclusions via topological derivative concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305 Google Scholar
22. Park, W.-K., "Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions," J. Comput. Phys., Vol. 231, 1426-1439, 2012.
doi:10.1016/j.jcp.2011.10.014 Google Scholar
23. Park, W.-K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency ," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026 Google Scholar
24. Park, W.-K. and D. Lesselier, "Fast electromagnetic imaging of thin inclusions in half-space affected by random scatterers," Waves Random Complex Media, Vol. 22, 3-23, 2012.
doi:10.1080/17455030.2010.536854 Google Scholar
25. Park, W.-K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002 Google Scholar
26. Park, W.-K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010 Google Scholar
27. Rosenheinrich, W., Tables of some indefinite integrals of bessel functions, Available at http://www.fh-jena.de/ rsh/Forschung/Stoer/besint.pdf.
28. Solimene, R., A. Dell'Aversano, and G. Leone, "Interferometric time reversal music for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012. Google Scholar
29. Solimene, R., A. Buonanno, and R. Pierri, "Imaging small PEC spheres by a linear delta-approach," IEEE Trans. on Eosci. Remote, Vol. 46, 3010-3018, 2008.
doi:10.1109/TGRS.2008.919273 Google Scholar
30. Solimene, R., A. Buonanno, F. Soldovieri, and R. Pierri, "Physical optics imaging of 3D PEC objects: Vector and multipolarized approaches," IEEE Trans. on Eosci. Remote, Vol. 48, 1799-1808, 2010.
doi:10.1109/TGRS.2009.2035053 Google Scholar
31. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Wiley, New York, 2001.
32. Zhu, G. K. and M. Popovic, "Comparison of radar and thermoacoustic technique in microwave breast imaging," Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011.
doi:10.2528/PIERB11080204 Google Scholar